scholarly journals High quality GeV proton beams from a density-modulated foil target

2009 ◽  
Vol 27 (4) ◽  
pp. 611-617 ◽  
Author(s):  
T.P. Yu ◽  
M. Chen ◽  
A. Pukhov

AbstractWe study proton acceleration from a foil target with a transversely varying density using multi-dimensional Particle-in-Cell (PIC) simulations. In order to reduce electron heating and deformation of the target, circularly polarized Gaussian laser pulses at intensities on the order of 1022 Wcm−2 are used. It is shown that when the target density distribution fits that of the laser intensity profile, protons accelerated from the center part of the target have quasi-monoenergetic spectra and are well collimated. In our two-dimensional PIC simulations, the final peak energy can be up to 1.4 GeV with the full-width of half maximum divergence cone of less than 4°. We observe highly efficient energy conversion from the laser to the protons in the simulations.


2007 ◽  
Vol 21 (03n04) ◽  
pp. 642-646 ◽  
Author(s):  
A. ABUDUREXITI ◽  
Y. MIKADO ◽  
T. OKADA

Particle-in-Cell (PIC) simulations of fast particles produced by a short laser pulse with duration of 40 fs and an intensity of 1020W/cm2 interacting with a foil target are performed. The experimental process is numerically simulated by considering a triangular concave target illuminated by an ultraintense laser. We have demonstrated increased acceleration and higher proton energies for triangular concave targets. We also determined the optimum target plasma conditions for maximum proton acceleration. The results indicated that a change in the plasma target shape directly affects the degree of contraction accelerated proton bunch.



2012 ◽  
Vol 78 (4) ◽  
pp. 461-468 ◽  
Author(s):  
WEI-MIN WANG ◽  
ZHENG-MING SHENG ◽  
SHIGEO KAWATA ◽  
CHUN-YANG ZHENG ◽  
YU-TONG LI ◽  
...  

AbstractEnergetic electron beam generation from a thin foil target by the ponderomotive force of an ultra-intense circularly polarized laser pulse is investigated. Two-dimensional particle-in-cell (PIC) simulations show that laser pulses with intensity of 1022–1023 Wcm−2 generate about 1–10 GeV electron beams, in agreement with the prediction of one-dimensional theory. When the laser intensity is at 1024–1025 Wcm−2, the beam energy obtained from PIC simulations is lower than the values predicted by the theory. The radiation damping effect is considered, which is found to become important for the laser intensity higher than 1025 Wcm−2. The effect of laser focus positions is also discussed.



2019 ◽  
Vol 37 (2) ◽  
pp. 165-170
Author(s):  
D. Papp ◽  
N.A.M. Hafz ◽  
C. Kamperidis

AbstractWe investigate an ionization injection scheme in a “weakly” non-linear regime of a wakefield, driven by sub-TW, few-cycle laser pulses in a single-stage, high-Z gas. This medium simultaneously provides the background wake fluid electrons from its lower ionization states and the necessary dephased electrons from its higher ionization states. Two dimensional-particle-in-cell simulations show the generation of relativistic electron beamlets having up to 15 MeV peak energy, with a narrow energy-spread and sub-fs duration. Since the currently-available sub-TW, few-cycle laser systems operate at kHz repetition rates, the presented scheme is capable of producing kHz attosecond electron bunches and their associated radiations which can find unique applications, for instance, in attosecond diffraction and microscopy.



2005 ◽  
Vol 12 (7) ◽  
pp. 073102 ◽  
Author(s):  
Y. Oishi ◽  
T. Nayuki ◽  
T. Fujii ◽  
Y. Takizawa ◽  
X. Wang ◽  
...  


Author(s):  
Mahsa Mehrangiz

Abstract With persistent progress in ultra-intense laser pulses, Coulomb explosion (CE) of spherical nanoclusters can in principle produce high-quality-quasi-monoenergetic ions. Focusing on using CE framework, in this paper, we have proposed a target scheme to accelerate light/heavy ions’ beam. The scheme relies on encapsulating a hollow Gold nanocluster inside a hollow proton-Carbon (HC) nanosphere. The ability of this suggestion has been simulated by the two-dimensional particle-in-cell code (EPOCH). Simulation results exhibit that a hollow Gold cluster can positively increase the electrons’ extraction. This condition may improve the acceleration of low-divergence H+, C6+, and Au67+ ions. Our simulation shows that at the end of the interaction, for a Gold cluster with an optimal hollow radius of 91.3 nm, the cut-off energy of H+, C6+, and Au67+ are about 54.9 MeV/u, 51.5 MeV/u, and 54.9 MeV/u, respectively. In this case, an increase of about 52% for H+ and 61% for C6+ is obtained, contrast to bare HC hollow nanosphere (i.e., a hollow nanosphere with no cluster), while the relative divergence decreases to 1.38 and 1.86, respectively for H+ and C6+ ions. We have also compared our simulation results with another proposed target structure composed of a void area with an optimum diameter of 70.4 nm between the fully- Gold nanocluster and HC nanosphere. We have exhibited that the results are improved, contrast to bare nanosphere. However, the cut-off energy suppression and angular divergence increase are shown compared with encapsulated hollow Gold nanocluster structure.



2009 ◽  
Vol 27 (1) ◽  
pp. 3-7 ◽  
Author(s):  
W.-M. Wang ◽  
Z.-M. Sheng ◽  
J. Zhang

AbstractElectron injection into a laser wakefield by the colliding of two circularly polarized laser pulses is analyzed by the Hamiltonian approach and particle-in-cell simulations. If the pump pulse driving the laser wakefield is right-circularly-polarized, electron injection is found only when the counter-propagating injection pulse is left-circularly-polarized and vice versa. This holds when the injection pulse is at low intensity and has a frequency near the pump pulse frequency ω0. For a moderately intense injection pulse, even if the two pulses have the same polarization, electron injection is found but with less efficiency. It is also found that the injection pulse with the frequency within [0.5ω0,3ω0] can still create electron injection efficiently provided it has the opposite polarization with the pump pulse.



2012 ◽  
Vol 78 (4) ◽  
pp. 491-496
Author(s):  
JUN ZHENG ◽  
ZHENG-MING SHENG ◽  
JIN-LU LIU ◽  
WEI-MIN ZHOU ◽  
HAN XU ◽  
...  

AbstractA double-slice-foil target is proposed for the generation of quasi-monoenergetic proton bunches by intense laser pulses. In this new target structure, two symmetrical solid slices are adjoined obliquely to the front side of a plane double-layer target. Two-dimensional particle-in-cell simulations show that a large number of hot electrons are pulled out from solid slices and accelerated forward by direct laser acceleration, which lead to significant enhancement of the sheath field and the produced proton beam energy as compared with the normal plane double-layer target and some other modified targets. It appears that well-collimated proton bunches with energy larger than 200 MeV can be produced at the focused laser intensity of about 1021W/cm2 with the proposed target design.



2009 ◽  
Vol 27 (3) ◽  
pp. 471-474 ◽  
Author(s):  
S.Z. Wu ◽  
C.T. Zhou ◽  
X.T. He ◽  
S.-P. Zhu

AbstractA two-layer target irradiated by an intense laser to generate strong interface magnetic field is proposed. The mechanism is analyzed through a simply physical model and investigated by two-dimensional particle-in-cell simulation. The effect of laser intensity on the resulting magnetic field strength is also studied. It is found that the magnetic field can reach up to several ten megagauss for laser intensity at 1019 Wcm−2.



2015 ◽  
Vol 34 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Z. Lécz ◽  
A. Andreev ◽  
A. Seryi

AbstractThe efficient transfer of angular orbital momentum from circularly polarized laser pulses into ions of solid density targets is investigated with different geometries using particle-in-cell simulations. The detailed electron and ion dynamics presented focus upon the energy and momentum conversion efficiency. It is found that the momentum transfer is more efficient for spiral targets and the maximum value is obtained when the spiral step is equal to twice the laser wavelength. This study reveals that the angular momentum distribution of ions strongly depends up on the initial target shape and density.



2013 ◽  
Vol 31 (4) ◽  
pp. 583-588 ◽  
Author(s):  
Pallavi Jha ◽  
Akanksha Saroch ◽  
Rohit Kumar Mishra

AbstractEvolution of longitudinal electrostatic wakefields, due to the propagation of a linearly polarized super-Gaussian laser pulse through homogeneous plasma has been presented via two-dimensional particle-in-cell simulations. The wakes generated are compared with those generated by a Gaussian laser pulse in the relativistic regime. Further, one-dimensional numerical model has been used to validate the generated wakefields via simulation studies. Separatrix curves are plotted to study the trapping and energy gain of an externally injected test electron, due to the generated electrostatic wakefields. An enhancement in the peak energy of an externally injected electron accelerated by wakes generated by super-Gaussian pulse as compared to Gaussian pulse case has been observed.



Sign in / Sign up

Export Citation Format

Share Document