Optimum path planning of robot arms

Robotica ◽  
1987 ◽  
Vol 5 (4) ◽  
pp. 323-331 ◽  
Author(s):  
V. Braibant ◽  
M. Geradin

SUMMARYThe optimum control of an industrial robot can be achieved by splitting the problem into two tasks: off-line programming of an optimum path, followed by an on-line path tracking.The aim of this paper is to address the numerical solution of the optimum path planning problem. Because of its mixed nature, it can be expressed either in terms of Cartesian coordinates or at joint level.Whatever the approach adopted, the optimum path planning problem can be formulated as the problem of minimizing the overall time (taken as objective function) subject to behavior and side constraints arising from physical limitations and deviation error bounds. The paper proposes a very general optimization algorithm to solve this problem, which is based on the concept of mixed approximation.A numerical application is presented which demonstrates the computational efficiency of the proposed algorithm.

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Robotica ◽  
1996 ◽  
Vol 14 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Bailin Cao ◽  
Gordon I. Dodds ◽  
George W. Irwin

SummaryAn approach to time-optimal smooth and collision-free path planning for two industrial robot arms is presented, where path planning and joint trajectory generation are integrated. A suitable objective function, combining the requirements of time optimality and path smoothness, is proposed, which is subject to the continuity of joint trajectories, limits on their rates of change and collision-free constraints. Fast and effective collision detection for the arms is achieved using the Kuhn- Tucker conditions along with the convexity of the distance function and relying on geometrical relationships between cylinders. Nonlinear optimization is used to solve this path planning problem. The feasibility of this method is illustrated both by simulation and by experimental results.


Robotica ◽  
1998 ◽  
Vol 16 (4) ◽  
pp. 415-423 ◽  
Author(s):  
Kimmo Pulakka ◽  
Veli Kujanpää

In this paper a path planning method for off-line programming of a joint robot is described. The method can automatically choose the easiest and safest route for an industrial robot from one position to another. The method is based on the use of a Self Organised Feature Map (SOFM) neural network. By using the SOFM neural network the method can adapt to different working environments of the robot. According to test results one can conclude that the SOFM neural network is a useful tool for the path planning problem of a robot.


Author(s):  
Reza Fotouhi-C. ◽  
Peter N. Nikiforuk ◽  
Walerian Szyszkowski

Abstract A combined trajectory planning problem and adaptive control problem for a two-link rigid manipulator is presented in this paper. The problem is divided into two parts: path planning for off-line processing, followed by on-line path tracking using an adaptive controller. The path planning is done at the joint level. The motion of the robot is specified by a sequence of knots (positions of the robot’s tip) in space Cartesian coordinates. These knots are then transformed into two sets of joint displacements, and piecewise cubic polynomials are used to fit these two sequences of joint displacements. The cubic spline function is used to construct a trajectory with the velocity and the acceleration as constraints. Linear scaling of the time variable is used to accommodate the velocity and acceleration constraints. A nonlinear scaling of the time variable is performed to fit the velocity to a pre-specified velocity profile. The adaptive scheme used takes full advantage of the known parameters of the manipulator while estimating the unknown parameters. In deriving the dynamic equations of motion, all of the physical parameters of the manipulator, including the distributed masses of the links, are taken into account. Some simulation results for the manipulator with unknown payload masses following a planned trajectory are presented.


Author(s):  
Nima Najmaei ◽  
Mehrdad R. Kermani

AbstractIn recent years, the interest in human-robot interactions has added a new dimension to the on-line path planning problem by requiring a method that guarantees a risk-free path. This paper presents a streamlined search algorithm for fast path modification. The algorithm is formulated as an optimization problem that evaluates alternative paths nearby each obstacle. Each path is evaluated based on the value of the danger assigned to that path. To reduce the size of the search space, the minimum number of via points necessary to alter the path is initially obtained using a geometrical method. Given the number of via points, the algorithm proceeds to locate the via points around the obstacle such that the resulting path through these via points satisfies all problem constraints. Obtaining a solution in this way renders a fast algorithm for path modification, while it better avoids problems often encountered in other gradient-based search algorithms. Case studies for two planar robots are provided to highlight some of the advantages of the proposed algorithm. Experimental results using a CRS-F3 robot manipulator validate the effectiveness of the algorithm for applications involving human-robot interactions.


Author(s):  
Keerthi Sagar ◽  
Dimiter Zlatanov ◽  
Matteo Zoppi ◽  
Cristiano Nattero ◽  
Sreekumar Muthuswamy

The paper introduces a new, intrinsically discrete, path planning and collision-avoidance problem, with multiple robots and multiple goals. The issue arises in the operation of the novel Swing and Dock (SaD) locomotion for a material handling system. Its agents traverse a base grid by sequences of rotations (swings) around fixed pins. Each agent must visit an array of goal positions in minimal time while avoiding collisions. The corresponding off-line path-planning problem is NP-hard. We model the system by an extended temporal graph and introduce two integer linear programming (ILP) formulations for the minimization of the makespan, with decision variables on the nodes and the edges, respectively. Both optimizations are constrained and favor idling over detours to reduce mechanical wear. The ILP formulations, tailored to the SaD system, are general enough to be applicable for many other single- and multi-agent problems over discretized networks. We have implemented the ILPs with a gurobi solver. Computational results demonstrate and compare the effectiveness of the two formulations.


Sign in / Sign up

Export Citation Format

Share Document