Combined Trajectory Planning and Parameter Identification of a Two-Link Rigid Manipulator

Author(s):  
Reza Fotouhi-C. ◽  
Peter N. Nikiforuk ◽  
Walerian Szyszkowski

Abstract A combined trajectory planning problem and adaptive control problem for a two-link rigid manipulator is presented in this paper. The problem is divided into two parts: path planning for off-line processing, followed by on-line path tracking using an adaptive controller. The path planning is done at the joint level. The motion of the robot is specified by a sequence of knots (positions of the robot’s tip) in space Cartesian coordinates. These knots are then transformed into two sets of joint displacements, and piecewise cubic polynomials are used to fit these two sequences of joint displacements. The cubic spline function is used to construct a trajectory with the velocity and the acceleration as constraints. Linear scaling of the time variable is used to accommodate the velocity and acceleration constraints. A nonlinear scaling of the time variable is performed to fit the velocity to a pre-specified velocity profile. The adaptive scheme used takes full advantage of the known parameters of the manipulator while estimating the unknown parameters. In deriving the dynamic equations of motion, all of the physical parameters of the manipulator, including the distributed masses of the links, are taken into account. Some simulation results for the manipulator with unknown payload masses following a planned trajectory are presented.

Robotica ◽  
1987 ◽  
Vol 5 (4) ◽  
pp. 323-331 ◽  
Author(s):  
V. Braibant ◽  
M. Geradin

SUMMARYThe optimum control of an industrial robot can be achieved by splitting the problem into two tasks: off-line programming of an optimum path, followed by an on-line path tracking.The aim of this paper is to address the numerical solution of the optimum path planning problem. Because of its mixed nature, it can be expressed either in terms of Cartesian coordinates or at joint level.Whatever the approach adopted, the optimum path planning problem can be formulated as the problem of minimizing the overall time (taken as objective function) subject to behavior and side constraints arising from physical limitations and deviation error bounds. The paper proposes a very general optimization algorithm to solve this problem, which is based on the concept of mixed approximation.A numerical application is presented which demonstrates the computational efficiency of the proposed algorithm.


Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


2014 ◽  
Vol 541-542 ◽  
pp. 1473-1477 ◽  
Author(s):  
Lei Zhang ◽  
Zhou Zhou ◽  
Fu Ming Zhang

This paper describes a method for vehicles flying Trajectory Planning Problem in 3D environments. These requirements lead to non-convex constraints and difficult optimizations. It is shown that this problem can be rewritten as a linear program with mixed integer linear constraints that account for the collision avoidance used in model predictive control, running in real-time to incorporate feedback and compensate for uncertainty. An example is worked out in a real-time scheme, solved on-line to compensate for the effect of uncertainty as the maneuver progresses. In particular, we compare receding horizon control with arrival time approaches.


Sign in / Sign up

Export Citation Format

Share Document