Design of 3-legged XYZ compliant parallel manipulators with minimised parasitic rotations

Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 787-806 ◽  
Author(s):  
Guangbo Hao ◽  
Haiyang Li

SUMMARYThis paper deals with the design of 3-legged distributed-compliance XYZ compliant parallel manipulators (CPMs) with minimised parasitic rotations, based on the kinematically decoupled 3-PPPRR (P: prismatic joint, and R: revolute joint) and 3-PPPR translational parallel mechanisms (TPMs). The designs are firstly proposed using the kinematic substitution approach, with the help of the stiffness center (SC) overlapping based approach. This is done by an appropriate embedded arrangement so that all of the SCs associated with the passive compliant modules overlap at the point where all of the input forces applied at the input stages intersect. Kinematostatic modelling and characteristic analysis are then carried out for the proposed large-range 3-PPPRR XYZ CPM with overlapping SCs. The results from finite element analysis (FEA) are compared to the characteristics found for the developed analytical models, as are experimental testing results (primary motion) from the prototyped 3-PPPRR XYZ CPM with overlapping SCs. Finally, issues on large-range motion and dynamics of such designs are discussed, as are possible improvements of the actuated compliant P joint. It is shown that the potential merits of the designs presented here include a) minimised parasitic rotations by only using three identical compliant legs; b) compact configurations and small size due to the use of embedded designs; c) approximately kinematostatically decoupled designs capable of easy controls; and d) monolithic fabrication for each leg using existing planar manufacturing technologies such as electric discharge machining (EDM).

Author(s):  
Guangbo Hao

XY compliant parallel manipulators (aka XY parallel flexure motion stages) have been used as diverse applications such as atomic force microscope scanners due to their proved advantages such as eliminated backlash, reduced friction, reduced number of parts and monolithic configuration. This paper presents an innovative stiffness centre based approach to design a decoupled 2-legged XY compliant parallel manipulator in order to better minimise the inherent parasitic rotation and have a more compact configuration. This innovative design approach makes all of the stiffness centres, associated with the passive prismatic (P) modules, overlap at a point that all of the applied input forces can go through. A monolithic compact and decoupled XY compliant parallel manipulator with minimised parasitic rotation is then proposed using the proposed design approach based on a 2-PP kinematically decoupled translational parallel manipulator. Its load–displacement and motion range equations are derived, and geometrical parameters are determined for a specified motion range. Finite element analysis comparisons are also implemented to verify the analytical models with analysis of the performance characteristics including primary stiffness, cross-axis coupling, parasitic rotation, input and output motion difference and actuator nonisolation effect. Compared with the existing XY compliant parallel manipulators obtained using 4-legged mirror-symmetric constraint arrangement, the proposed XY compliant parallel manipulators based on stiffness centre approach mainly benefits from fewer legs resulting in reduced size, simpler modelling as well as smaller lost motion. Compared with existing 2-legged designs with the conventional arrangement, the present design has smaller parasitic rotation, which has been proved from the finite element analysis results.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Guangbo Hao ◽  
Xianwen Kong

There is an increasing need for compact large-range XY compliant parallel manipulators (CPMs). This paper deals with a novel large-range XY CPM with enhanced out-of-plane stiffness (LRXYCPMEOS). Unlike most of XY CPMs based on the 4-PP (P: prismatic) decoupled parallel mechanism, the LRXYCPMEOS is obtained from a 4-PP-E (E: planar) decoupled parallel mechanism by replacing each P joint with a planar double multibeam parallelogram module (DMBPM) and the E joint with a spatial double multibeam parallelogram module. Normalized analytical models for the LRXYCPMEOS are then presented. As a case study, an LRXYCPMEOS with a motion range 10 mm × 10 mm in both positive directions is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, actuation force check, and buckling check. The analytical models are compared with the finite element analysis (FEA) models. Finally, dynamics consideration, manufacturability, out-of-plane stiffness, and result interpretation are discussed. It is shown that the LRXYCPMEOS in the case study has the following merits: large range of motion up to 20 mm × 20 mm, enhanced out-of-plane stiffness which is approximately 7.1 times larger than the associated planar XY CPM without the spatial compliant leg, and well-constrained parasitic motion with the parasitic translation along the Z-axis less than 2 × 10−4 mm, the parasitic rotation about the X-axis/Y-axis less than 2 × 10−6 rad, and the parasitic rotation about the Z-axis below 1 × 10−6 rad.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Guangbo Hao ◽  
Xianwen Kong

To meet the need for large-range high-precision motion stages, a design methodology of XYZ compliant parallel manipulators (CPMs) is introduced at first. A spatial double four-beam module and a compliant P (prismatic) joint, composed of two spatial double four-beam modules, are then proposed. Starting from a 3-PPPR (R: revolute) translational parallel manipulator, a large-range modular XYZ CPM with identical spatial modules is constructed using the proposed design approach. Normalized analytical models for the large-range modular XYZ CPM are further presented. As a case study, a modular XYZ CPM with a motion range of 10 mm × 10 mm × 10 mm along the positive X-, Y-, and Z-axes is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, buckling check, and actuation force check. The analytical models are compared with the finite element analysis (FEA) models. Finally, the dynamics consideration, manufacturability, and merits are discussed. It is shown that the proposed large-range modular XYZ CPM has the following main merits compared with existing designs: (1) large range of motion up to 20 mm × 20 mm × 20 mm and (2) reduced number of design parameters through the use of identical spatial modules, although the manufacturability is a challenging issue.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2015 ◽  
Vol 100 ◽  
pp. 1598-1607 ◽  
Author(s):  
Mešić Elmedin ◽  
Avdić Vahid ◽  
Pervan Nedim ◽  
Repčić Nedžad

Author(s):  
P.R. Roy ◽  
V. Hariram ◽  
M. Subramanian

Emissions such as Nox and CO resulting from the combustion of the diesel engines in the commercial vehicles leads to environmental degradation and ozone layer depletion. Alarming environment trend forces the government institutions to develop and enforce strict emission laws for the next generation transportation vehicles. Stricter emission laws mean higher operating pressure, temperature, reduced weight, tight packaging space, engine downsizing etc. Engine cooling systems are the critical components in the managing the engine cooling requirement of the commercial vehicle. Generally engine cooling system includes radiator, charge air cooler, engine oil cooler etc. Product development of thermal management system using the traditional design process takes more time, resource and money. To solve the complex design problem, numerical technique such as finite element analysis is performed upfront in the product development of the radiator to evaluate the structure behaviour under mechanical loading. In this paper, internal static pressure analysis of a radiator is presented to showcase the benefits of using the finite element technique earlier in the product design phase. Pressure cycle life at a critical joint of the radiator is calculated using strain-life approach. Finite element analysis aids in visualization of the hot spots in the design, comparing different design options with less turnaround time. Experimental testing and prototypes can be reduced. Risk of a product being failed is greatly minimized by performing the numerical simulation.


Author(s):  
Guangbo Hao ◽  
John Mullins

Bistable mechanisms have two stable positions and their characteristic analysis is much harder than the traditional spring system due to their postbuckling behaviour. As the strong nonlinearity induced by the postbuckling, it is difficult to establish a correct model to reveal the comprehensive nonlinear characteristics. This paper deals with the in-plane comprehensive static analysis of a translational bistable mechanism using nonlinear finite element analysis. The bistable mechanism consists of a pair of fixed-clamped inclined beams in symmetrical arrangement, which is a monolithic design and works within the elastic deformation domain. The displacement-controlled finite element analysis method using Strand7 is first discussed. Then the force–displacement relation of the bistable mechanism along the primary motion direction is described followed by the detailed primary translational analysis for different parameters. A simple analytical (empirical) equation for estimating the negative stiffness is obtained, and experimental testing is performed for a case study. It is concluded that (a) the negative stiffness magnitude has no influence from the inclined angle, but is proportional to the product of the Young’s modulus, beam depth, and cubic ratio for in-plane thickness to the beam length; (b) the unstable position is proportional to the product of the beam length and the Sine function of the inclined angle, and is not affected by the in-plane thickness and the material (or the out-of-plane thickness). The in-plane off-axis (translational and rotational) stiffness is further analysed to show the stiffness changes over the primary motion and the off-axis motion, and a negative rotational stiffness domain has been obtained.


2015 ◽  
Vol 6 (6) ◽  
pp. 759-774
Author(s):  
André F. B. P. Pinto ◽  
S.M.O. Tavares ◽  
José M. A. César de Sá ◽  
P.M.S.T. de Castro

Purpose – The purpose of this paper is to use PAM-CRASH, a finite element analysis solver, to assess the performance of a mass production vehicle cross car beam (CCB) under an overlap frontal crash scenario (crashworthiness). Simulation results were reviewed according to what is plausible to register regarding some critical points displacements and, moreover, to identify its stress concentrations zones. Furthermore, it was also computed the CCB modal analysis (noise, vibration and harshness (NVH) assessment) in order to examine if its natural modes are within with the original equipment manufacturer (OEM) design targets. Design/methodology/approach – The available data at the beginning of the present study consisted of the structure CAD file and performance requirements stated by the OEM for NVH. No technical information was available concerning crashworthiness. Taking into account these limitations, it was decided to adapt the requirements for other mass production cars of the same category, as regards dynamic loading. A dynamic explicit code finite element analysis was performed throughout the CCB structure simulating the 120e−3 s crash event. For the modal analysis, there were some necessary modifications to the explicit finite element model in order to perform the analysis in implicit code. In addition, the car body in white stiffness was assigned at the boundaries. These stiffness values are withdrawn from the points where the CCB is attached to the car body’s sheet metal components. Findings – Although the unavailability of published results for this particular CCB model prevents a comparison of the present results, the trends and order of magnitude of the crash simulation results are within the expectations for this type of product. Concerning modal analysis, the steering column first natural frequency has a percent deviation from the design lower bound value of 5.09 percent when local body stiffness is considered and of 1.94 percent with fixed boundary conditions. The other requirement of the NVH assessment regarding a 5 Hz minimum interval between first vehicle CCB mode and the first mode of the steering column was indeed achieved with both boundary configurations. Originality/value – This study is a further confirmation of the interest of numerical modeling as a first step before actual experimental testing, saving time and money in an automotive industry that has seen an enormous increase of the demand for new car models in the last decade.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Priyank Rai ◽  
Dhiraj Garg ◽  
Tulika Tripathi ◽  
Anup Kanase ◽  
Gayatri Ganesh

Abstract Background Although, the outcomes and changes in the maxillofacial complex after the application of intraoral bone anchored Class III elastics, have been reported by multiple clinical studies, there was no finite element study to assess and evaluate the stress pattern and displacement on maxillomandibular complex with bimaxillary anchorage. The present study aims to evaluate the biomechanical effects on maxillomandibular complex of Skeletally anchored Class III elastics with varying angulations using the 3D finite element analysis. Methodology Two 3-dimensional analytical models were developed using the Mimics 8.11 (Materialise: Leuven, Belgium) and ANSYS software Version 12.1 (ANSYS Inc, Canonsburg, PA, USA) from sequential computed tomography images taken from a Skeletal Class III subject. The models were meshed into 465,091 tetrahedral elements and 101,247 nodes. Intraoral mechanics for skeletally anchored maxillary protraction (I-SAMP) were applied on two models i.e. A and B (without and with maxillary expansion respectively) between miniplates on maxilla and mandible on both right and left sides with three different angulations of forces—10°, 20° and 30°). Results Although the craniomaxillary complex in both the models (A and B) displaced forward while demonstrating rotations in opposite directions, the displacements and rotations decreased gradually with the increase of the angle of load application from 10° to 30°. The mandible rotated clockwise in both the simulations, but the displacement of mandibular surface landmarks was higher in Simulation A. However, the antero-inferior displacement of the glenoid fossa was higher in Simulation B than in A. Conclusion Significant displacement of maxillofacial sutures and structures was witnessed with I-SAMP with maxillary expansion and Class III elastics for correction of Skeletal Class III with maxillary retrognathism. Thus, I-SAMP with maxillary expansion is a desired protocol for treatment of maxillary retrognathism. However, the prescribed angulation of the Class III elastics should be as low as possible to maximise the desired effects.


Author(s):  
Václav Sebera ◽  
Milan Šimek

The objective of the paper is the parametrization and the finite element analysis of mechanical pro­per­ties of a through dovetail joint made with the use of a specific procedure by a 3-axis CNC machine. This corner joint was used for the simulation of the bending load of the joint in the angle plane – by compression, i.e. by pressing the joint together. The deformation fields, the stress distribution, the stiffness and the bending moment of the joints were evaluated. The finite element system ANSYS was used to create two parametric numerical models of the joint. The first one represents an ideal­ly stiff joint – both joint parts have been glued together. The second model includes the contact between the joined parts. This numerical model was used to monitor the response of the joint stiffness to the change of the static friction coefficient. The results of both models were compared both with each other and with similar analyses conducted within the research into ready-to-assemble furniture joints. The results can be employed in the designing of more complex furniture products with higher demands concerning stiffness characteristics, such as furniture for sitting. However, this assumption depends on the correction of the created parametric models by experimental testing.


Sign in / Sign up

Export Citation Format

Share Document