Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties

Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1757-1779 ◽  
Author(s):  
Brahim Brahmi ◽  
Maarouf Saad ◽  
Cristobal Ochoa Luna ◽  
Philippe S. Archambault ◽  
Mohammad H. Rahman

SUMMARYThis paper investigates the passive and active control strategies to provide a physical assistance and rehabilitation by a 7-DOF exoskeleton robot with nonlinear uncertain dynamics and unknown bounded external disturbances due to the robot user's physiological characteristics. An Integral backstepping controller incorporated with Time Delay Estimation (BITDE) is used, which permits the exoskeleton robot to achieve the desired performance of working under the mentioned uncertainties constraints. Time Delay Estimation (TDE) is employed to estimate the nonlinear uncertain dynamics of the robot and the unknown disturbances. To overcome the limitation of the time delay error inherent of the TDE approach, a recursive algorithm is used to further reduce its effect. The integral action is employed to decrease the impact of the unmodeled dynamics. Besides, the Damped Least Square method is introduced to estimate the desired movement intention of the subject with the objective to provide active rehabilitation. The controller scheme is to ensure that the robot system performs passive and active rehabilitation exercises with a high level of tracking accuracy and robustness, despite the unknown dynamics of the exoskeleton robot and the presence of unknown bounded disturbances. The design, stability, and convergence analysis are formulated and proven based on the Lyapunov–Krasovskii functional theory. Experimental results with healthy subjects, using a virtual environment, show the feasibility, and ease of implementation of the control scheme. Its robustness and flexibility to deal with parameter variations due to the unknown external disturbances are also shown.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 597
Author(s):  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Tanvir Ahmed ◽  
Asif Al Zubayer Swapnil ◽  
Mohammad AssadUzZaman ◽  
...  

The research presents a novel controller designed for robotic systems subject to nonlinear uncertain dynamics and external disturbances. The control scheme is based on the modified super-twisting method, input/output feedback linearization, and time delay approach. In addition, to minimize the chattering phenomenon and ensure fast convergence to the selected sliding surface, a new reaching law has been integrated with the control law. The control scheme aims to provide high performance and enhanced accuracy via limiting the effects brought by the presence of uncertain dynamics. Stability analysis of the closed-loop system was conducted using a powerful Lyapunov function, showing finite time convergence of the system’s errors. Lastly, experiments shaping rehabilitation tasks, as performed by healthy subjects, demonstrated the controller’s efficiency given its uncertain nonlinear dynamics and the external disturbances involved.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 165
Author(s):  
Tie Zhang ◽  
Aimin Zhang

In this study, a robust H∞ finite-time tracking controller is proposed for robotic manipulators based on time delay estimation. In this controller, there is no need to know the dynamics of robots, so it is quite simple. The high-gain observer is employed to estimate the joint velocities, which makes it much lower in cost. The theorem proof shows that the closed-loop system is finite-time stable and has a L2 gain that is less than or equal to γ, which shows high accuracy and strong robustness to estimation errors and external disturbances. Simulations on a two-link robot illustrate the effectiveness and advantages of the proposed controllers.


Sign in / Sign up

Export Citation Format

Share Document