Multi-DoFs Exoskeleton-Based Bilateral Teleoperation with the Time-Domain Passivity Approach

Robotica ◽  
2019 ◽  
Vol 37 (9) ◽  
pp. 1641-1662 ◽  
Author(s):  
Domenico Buongiorno ◽  
Domenico Chiaradia ◽  
Simone Marcheschi ◽  
Massimiliano Solazzi ◽  
Antonio Frisoli

SummaryIt is well known that the sense of presence in a tele-robot system for both home-based tele-rehabilitation and rescue operations is enhanced by haptic feedback. Beyond several advantages, in the presence of communication delay haptic feedback can lead to an unstable teleoperation system. During the last decades, several control techniques have been proposed to ensure a good trade-off between transparency and stability in bilateral teleoperation systems under time delays. These proposed control approaches have been extensively tested with teleoperation systems based on identical master and slave robots having few degrees of freedom (DoF). However, a small number of DoFs cannot ensure both an effective restoration of the multi-joint coordination in tele-rehabilitation and an adequate dexterity during manipulation tasks in rescue scenario. Thus, a deep understanding of the applicability of such control techniques on a real bilateral teleoperation setup is needed. In this work, we investigated the behavior of the time-domain passivity approach (TDPA) applied on an asymmetrical teleoperator system composed by a 5-DoFs impedance designed upper-limb exoskeleton and a 4-DoFs admittance designed anthropomorphic robot. The conceived teleoperation architecture is based on a velocity–force (measured) architecture with position drift compensation and has been tested with a representative set of tasks under communication delay (80 ms round-trip). The results have shown that the TDPA is suitable for a multi-DoFs asymmetrical setup composed by two isomorphic haptic interfaces characterized by different mechanical features. The stability of the teleoperator has been proved during several (1) high-force contacts against stiff wall that involve more Cartesian axes simultaneously, (2) continuous contacts with a stiff edge tests, (3) heavy-load handling tests while following a predefined path and (4) high-force contacts against stiff wall while handling a load. The found results demonstrated that the TDPA could be used in several teleoperation scenarios like home-based tele-rehabilitation and rescue operations.

2016 ◽  
Vol 40 (11) ◽  
pp. 3252-3262 ◽  
Author(s):  
Zheng Chen ◽  
Ya-Jun Pan ◽  
Jason Gu ◽  
Shane Forbrigger

Multilateral teleoperation systems, which are extended from the traditional bilateral teleoperation, have become subject to increasing attention in current years, with increasing industrial requirements, such as the remote operation of larger objects and more complex tasks. In this paper, a general multilateral teleoperation control problem is discussed, in which n masters remotely control n slaves through delayed communication channels. A novel communication structure is proposed to satisfy the multiple master–slave communication requirement, in which weighting coefficients are chosen freely to perform the weighted effects of different masters or slaves. Power-based time-domain passivity control is subsequently developed for the complex multiple master–slave communication channel, to achieve the passivity of multilateral teleoperation systems under time delay. Experiments on a teleoperation system with two masters and two slaves are described; the results verify the effectiveness of the proposed control scheme.


2019 ◽  
Vol 29 (4) ◽  
pp. 681-692 ◽  
Author(s):  
Edgar Estrada ◽  
Wen Yu ◽  
Xiaoou Li

Abstract Haptic guidance can improve control accuracy in bilateral teleoperation. With haptic sensing, the human operator feels that he grabs the robot on the remote side. There are results on the stability and transparency analysis of teleoperation without haptic guidance, and the analysis of teleoperation with haptic feedback is only for linear and zero time-delay systems. In this paper, we consider more general cases: the bilateral teleoperation systems have time-varying communication delays, the whole systems are nonlinear, and they have force feedback. By using the admittance human operator model, we propose a new control scheme with the interaction passivity of the teleoperator. The stability and transparency of the master-slave system are proven with the Lyapunov–Krasovskii method. Numerical simulations illustrate the efficiency of the proposed control methods.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


2009 ◽  
Vol 6 (7) ◽  
pp. 577-580
Author(s):  
N. H. Adamyan ◽  
H. H. Adamyan ◽  
G. Yu. Kryuchkyan

Sign in / Sign up

Export Citation Format

Share Document