A Single-Loop MIMO Trajectory Tracking Controller for Autonomous Quadrotors: The Control Point Concept

Robotica ◽  
2020 ◽  
pp. 1-14
Author(s):  
Han Woong Bae ◽  
Farbod Fahimi

SUMMARY In this paper, a sliding mode control using a control point concept is proposed for an under-actuated quadrotor. The proposed controller controls the position of the control point, a displaced point from the quadrotor’s geometric center, and the yaw angle. This method solves singularity issues in control matrix inversion and enables the utilization of the multi-input multi-output equation to derive the control inputs. The sliding surface is designed to control four outputs while stabilizing roll and pitch angles. Simulation and experimental results show the effectiveness and robustness of the proposed controller in the tracking of a trajectory under parametric uncertainties.

Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Xiaojie Sun ◽  
Guofeng Wang ◽  
Yunsheng Fan

To promote the development of military and civilian applications for marine technology, more and more scientific research around the world has begun to develop unmanned surface vehicles (USVs) technology with advanced control capabilities. This paper establishes and identifies the model of vector propulsion USV, which is widely used at present. After analyzing its actuator distribution, we consider that the more realistic vessel model should be an incomplete underactuated system. For this system, a virtual control point method is adopted and an adaptive sliding mode trajectory tracking controller with neural network minimum learning parameter (NNMLP) theory is designed. Finally, in the simulation experiment, the thruster speed and propulsion angle are used as the inputs of the controller, and the linear and circular trajectory tracking tests are carried out considering the delay effect of the actuator, system uncertainty, and external disturbance. The results show that the proposed tracking control framework is reasonable.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1951
Author(s):  
Shun-Hung Tsai ◽  
Yi-Ping Chang ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

A robust trajectory tracking control scheme for quadrotor unmanned aircraft vehicles under uncertainties is proposed herein. A tracking controller combined with the sliding mode and integral backstepping is performed for position and attitude tracking. The stability of the trajectory tracking controller of the quadrotor is investigated via Lyapunov stability analysis. By incorporating force and torque disturbances into numerical simulations, the results demonstrate the effectiveness of the proposed quadrotor trajectory controller. Finally, the experiments validate the feasibility of the proposed controller.


Transport ◽  
2021 ◽  
Vol 0 (0) ◽  
pp. 1-17
Author(s):  
Runqiao Liu ◽  
Minxiang Wei ◽  
Nan Sang ◽  
Jianwei Wei

To achieve anti-crosswind, anti-sideslip, and anti-rollover in trajectory-tracking for Four-Wheel Steering (4WS) autonomous vehicles, a trajectory-tracking controller based on a four-channel Active Disturbance Rejection Control (ADRC) was used to track the desired lateral displacement, longitudinal displacement, yaw angle, and roll angle, and minimize the tracking errors between the actual output values and the desired values through static decoupling steering and braking systems. In addition, the anti-crosswind, anti-sideslip, and anti-rollover simulations were implemented with CarSim®. Finally, the simulation results showed that the 4WS autonomous vehicle with the controller still has good anti-crosswind, anti-sideslip, and anti-rollover performance in path tracking, even under a small turning radius or lowadhesion curved roads.


Author(s):  
Kaveh Merat ◽  
Hoda Sadeghian ◽  
Hassan Salarieh ◽  
Aria Alasty

In this paper the synchronization of a class of nonlinear chaotic circuits known as Sprott Circuits is studied. The Synchronization is obtained using a variable structure method based on sliding mode control with time varying sliding surface and variable boundary layer in presence of external disturbance and parametric uncertainties. The simulation is presented to show the effectiveness of this method. The results show the high quality and good performance of the method presented in the paper for synchronization of different drive-response chaotic Sprott circuits.


2013 ◽  
Vol 278-280 ◽  
pp. 1593-1600 ◽  
Author(s):  
Chao Liu ◽  
Sheng Jing Tang ◽  
Sheng Yi Yang ◽  
Jie Guo

In order to ensure the quad-rotor can track moving targets or desire trajectory accurately and quickly when face external disturbance, sliding mode control is used to overcome the system uncertainties and external disturbances. A fuzzy controller is introduced to decrease the chattering and improve performance of the system. The simulation considering external disturbance is used to test the performance of the fuzzy sliding mode trajectory tracking controller and the result shows that the fuzzy sliding mode trajectory tracking controller is feasible.


Robotica ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Farbod Fahimi ◽  
Chris Van Kleeck

SUMMARYExperiments with a nonlinear trajectory-tracking controller for marine unmanned surface vessels are reported. The tracking controller is designed using a nonlinear robust model-based sliding mode approach. The marine vehicles can track arbitrary desired trajectories that are defined in Cartesian coordinate as continuous functions of time. The planar dynamic model used for the controller design consists of 3 degrees of freedom (DOFs) of surge, sway, and yaw. The vessel only has two actuators, so the vessel is underactuated. Therefore, only two outputs, which are functions of the 3-DOF, can be controlled. The Cartesian position of a control point on the vessel is defined as the output. The orientation dynamics is not directly controlled. It has been previously shown that the orientation dynamics, as the internal dynamics of this underactuated system, is stable. The result of field experiments show the effectiveness of tracking control laws in the presence of parameter uncertainty and disturbance. The experiments were performed in a large outdoor pond using a small test boat. This paper reports the first theoretical development and experimental verification of the proposed model-based nonlinear trajectory-tracking controller.


Sign in / Sign up

Export Citation Format

Share Document