Position-Based Fractional-Order Impedance Control of a 2 DOF Serial Manipulator

Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Selçuk Kizir ◽  
Ali Elşavi

SUMMARY Impedance control is one of the interaction and force control methods that has been widely applied in the research of robotics. In this paper, a new position-based fractional-order impedance control scheme is proposed and applied to a 2 DOF serial manipulator. An RR robot manipulator with full arm dynamics and its environment were designed using Matlab/Simulink. The position control of the manipulator was utilized based on computed torque control to cancel out the nonlinearities existing on the dynamic model of the robot. Parameters of classical impedance controller (CIC) and proposed fractional-order impedance controller (FOIC) were optimized in order to minimize impact forces for comparison of the results in three conditions. In CIC condition: three constant parameters of the impedance controller were optimized: in Frac_λμ condition: Only non-integer parameters of the FOIC were re-optimized after the parameters in CIC had been accepted, and in Frac_all condition: all parameters of the FOIC were re-optimized. In order to show the effectiveness of the proposed method, simulations were conducted for all cases and performance indices were computed for the interaction forces. Results showed that impacts were reduced with an improvement of 26.12% from CIC to Frac_ λμ and an improvement of 47.21% from CIC to Frac_all. The proposed scheme improves the impedance behavior and robustness showing better impact absorption performance, which is needed in many challenging robotic tasks and intelligent mechatronic devices.

SIMULATION ◽  
2017 ◽  
Vol 93 (7) ◽  
pp. 619-630 ◽  
Author(s):  
Sunil Kumar ◽  
Vikas Rastogi ◽  
Pardeep Gupta

A hybrid impedance control scheme for the force and position control of an end-effector is presented in this paper. The interaction of the end-effector is controlled using a passive foundation with compensation gain. For obtaining the steady state, a proportional–integral–derivative controller is tuned with an impedance controller. The hybrid impedance controller is implemented on a terrestrial (ground) single-arm robot manipulator. The modeling is done by creating a bond graph model and efficacy is substantiated through simulation results. Further, the hybrid impedance control scheme is applied on a two-link flexible arm underwater robot manipulator for welding applications. Underwater conditions, such as hydrodynamic forces, buoyancy forces, and other disturbances, are considered in the modeling. During interaction, the minimum distance from the virtual wall is maintained. A simulation study is carried out, which reveals some effective stability of the system.


Robotica ◽  
2018 ◽  
Vol 36 (12) ◽  
pp. 1920-1942 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
Seyed Hassan Hosseinnia

SUMMARYThis paper presents a fractional-order sliding mode control scheme equipped with a disturbance observer for robust impedance control of a single-link flexible robot arm when it comes into contact with an unknown environment. In this research, the impedance control problem is studied for both unconstrained and constrained maneuvers. The proposed control strategy is robust with respect to the changes of the environment parameters (such as stiffness and damping coefficient), the unknown Coulomb friction disturbances, payload, and viscous friction variations. The proposed control scheme is also valid for both unconstrained and constrained motions. Our novel approach automatically switches from the free to the constrained motion mode using a simple algorithm of contact detection. In this regard, an impedance control scheme is proposed with the inner loop position control. This means that in the free motion, the applied force to the environment is zero and the reference trajectory for the inner loop position control is the desired trajectory. However, in the constrained motion the reference trajectory for the inner loop is determined by the desired impedance dynamics. Stability of the closed loop control system is proved by Lyapunov theory. Several numerical simulations are carried out to indicate the capability and the effectiveness of the proposed control scheme.


2013 ◽  
Vol 765-767 ◽  
pp. 1920-1923
Author(s):  
Li Jiang ◽  
Yang Zhou ◽  
Bin Wang ◽  
Chao Yu

A novel approach to impedance control based on the object is proposed to control dual-arm systems with senseless force. Considering the motion of the object, the statics and dynamics of the dual-arm systems are modeled. Extending the dynamics of dual-arm system and the impedance of object to the operational space, impedance control with senseless force is presented. Simulations on a dual-arm system are carried out to demonstrate the performance of the proposed control scheme. Comparing with position control, results of numerical simulations show that the proposed scheme realizes suitable compliant behaviors in terms of the object, and minimizes the error of the relative position between the manipulators even without force sensors.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


2004 ◽  
Vol 471-472 ◽  
pp. 736-740
Author(s):  
G. Wang ◽  
K. Liu

Laser cutting process plays a key role in obtaining accurate parts in Laminated Solid Manufacture. Conventional laser cutting machine adopts motion control scheme. For further improving the cutting accuracy, dynamic factors are to be taken into account. The dynamic compensation scheme is proposed. The method combines the advantages of close-loop position control and computed torque control. Different from other presented schemes, the method is not model-based. A multilayer neural network is employed to realize the inverse mechanic dynamics. The complicated dynamic parameter identification problem becomes the learning process under supervision. Experiments have been conducted to verify the proposed method for improving the laser cutting accuracy.


Author(s):  
Stephen Mascaro

This paper describes a modular 2-DOF serial robot manipulator and accompanying experiments that have been developed to introduce students to the fundamentals of robot control. The robot is designed to be safe and simple to use, and to have just enough complexity (in terms of nonlinear dynamics) that it can be used to showcase and compare the performance of a variety of textbook robot control techniques including computed torque feedforward control, inverse dynamics control, robust sliding-mode control, and adaptive control. These various motion control schemes can be easily implemented in joint space or operational space using a MATLAB/Simulink real-time interface. By adding a simple 2-DOF force sensor to the end-effector, the robot can also be used to showcase a variety of force control techniques including impedance control, admittance control, and hybrid force/position control. The 2-DOF robots can also be used in pairs to demonstrate control architectures for multi-arm coordination and master/slave teleoperation. This paper will describe the 2-DOF robot and control hardware/software, illustrate the spectrum of robot control methods that can be implemented, and show sample results from these experiments.


2019 ◽  
Vol 16 (06) ◽  
pp. 1950042
Author(s):  
Jorge Muñoz ◽  
Concepción A. Monje ◽  
Santiago Martínez de la Casa ◽  
Carlos Balaguer

This paper presents a control scheme for the humanoid robot TEO’s elbow joint based on a novel tuning method for fractional-order PD and PI controllers. Due to the graphical nature of the proposed method, a few basic operations are enough to tune the controllers, offering very competitive results compared to classic methods. The experiments show a robust performance of the system to mass changes at the tip of the humanoid arm.


2000 ◽  
Vol 12 (5) ◽  
pp. 567-576 ◽  
Author(s):  
Hisaaki Hirabayashi ◽  
◽  
Koichi Sugimoto ◽  
Atsuko Enomoto ◽  
Ichirou Ishimaru ◽  
...  

Experimental results proved that a unified method of impedance control, already presented as virtual compliance control, can make a robot manipulator without any special mechanism perform various patterns of motion, corresponding to the specified software parameters of the control method. Outcomes demonstrated are as follows. (1) The proposed control method can change the characteristics of spring constant and dashpot constant, that is impedance, of 6 degree of freedom (translational: 3 , rotational: 3) of the robot hand. (2) The change of characteristics mentioned above in (1) can be treated equivalently in both translational and rotational. (3) The change of characteristics mentioned above in (1) and (2) can be implemented in real time. (4) The proposed control method can change the characteristics of transient response in velocity control of 6-d.o.f. of the robot hands. (5) The change of characteristics mentioned above in (4) can be treated equivalently both translationally and rotationally. (6) The change of characteristics mentioned above in (4) and (5) can be implemented in real time. (7) The proposed control method can make impedance control applied to one axis, and position control applied to other axis simultaneously, as to 6-d.o.f. of the robot hands. (8) Experimental results mentioned above in (1) - (7) imply the following advantage and disadvantage; advantage: a unified control method that can perform various patterns of motion by specifying software parameters, disadvantage: control response is not necessarily precise that is because proposed control method is base on not dynamics but kinematics.


Author(s):  
Farsam Farzadpour ◽  
Hossein Faraji

A lot of endeavors regarding the development of slider–crank mechanism in the ship’s propeller have been made and continue to be investigated. This paper presents the position control of a slider–crank mechanism, which is driven by the piston cylinder actuator to adjust the blade pitch angle. An effective motion control strategy known as the computed torque control can ensure global asymptotic stability. However, it is essential for this control scheme to have a precise and accurate system model. Moreover, large amounts of changes in the output and even instability of process are caused by a small amount of measurement or process noise, when the derivative gain is sufficiently large. Accordingly, in order to compensate any parameter deviation and disturbances as well as minimizing errors, we have presented a genetic algorithm-based computed torque control system which adjusts the proportional-derivative gains. Computer simulations are performed which reveals that asymptotically stability is reached and it confirms the effectiveness and high tracking capability of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document