Impedance Control of Dual-Arm Systems Based on the Object with Senseless Force

2013 ◽  
Vol 765-767 ◽  
pp. 1920-1923
Author(s):  
Li Jiang ◽  
Yang Zhou ◽  
Bin Wang ◽  
Chao Yu

A novel approach to impedance control based on the object is proposed to control dual-arm systems with senseless force. Considering the motion of the object, the statics and dynamics of the dual-arm systems are modeled. Extending the dynamics of dual-arm system and the impedance of object to the operational space, impedance control with senseless force is presented. Simulations on a dual-arm system are carried out to demonstrate the performance of the proposed control scheme. Comparing with position control, results of numerical simulations show that the proposed scheme realizes suitable compliant behaviors in terms of the object, and minimizes the error of the relative position between the manipulators even without force sensors.

Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


SIMULATION ◽  
2017 ◽  
Vol 93 (7) ◽  
pp. 619-630 ◽  
Author(s):  
Sunil Kumar ◽  
Vikas Rastogi ◽  
Pardeep Gupta

A hybrid impedance control scheme for the force and position control of an end-effector is presented in this paper. The interaction of the end-effector is controlled using a passive foundation with compensation gain. For obtaining the steady state, a proportional–integral–derivative controller is tuned with an impedance controller. The hybrid impedance controller is implemented on a terrestrial (ground) single-arm robot manipulator. The modeling is done by creating a bond graph model and efficacy is substantiated through simulation results. Further, the hybrid impedance control scheme is applied on a two-link flexible arm underwater robot manipulator for welding applications. Underwater conditions, such as hydrodynamic forces, buoyancy forces, and other disturbances, are considered in the modeling. During interaction, the minimum distance from the virtual wall is maintained. A simulation study is carried out, which reveals some effective stability of the system.


Robotica ◽  
2018 ◽  
Vol 36 (12) ◽  
pp. 1920-1942 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
Seyed Hassan Hosseinnia

SUMMARYThis paper presents a fractional-order sliding mode control scheme equipped with a disturbance observer for robust impedance control of a single-link flexible robot arm when it comes into contact with an unknown environment. In this research, the impedance control problem is studied for both unconstrained and constrained maneuvers. The proposed control strategy is robust with respect to the changes of the environment parameters (such as stiffness and damping coefficient), the unknown Coulomb friction disturbances, payload, and viscous friction variations. The proposed control scheme is also valid for both unconstrained and constrained motions. Our novel approach automatically switches from the free to the constrained motion mode using a simple algorithm of contact detection. In this regard, an impedance control scheme is proposed with the inner loop position control. This means that in the free motion, the applied force to the environment is zero and the reference trajectory for the inner loop position control is the desired trajectory. However, in the constrained motion the reference trajectory for the inner loop is determined by the desired impedance dynamics. Stability of the closed loop control system is proved by Lyapunov theory. Several numerical simulations are carried out to indicate the capability and the effectiveness of the proposed control scheme.


2020 ◽  
Vol 10 (24) ◽  
pp. 8927
Author(s):  
Alejandro Suarez ◽  
Pedro J. Sanchez-Cuevas ◽  
Guillermo Heredia ◽  
Anibal Ollero

This paper considers the problem of performing bimanual aerial manipulation tasks in grabbing conditions, with one of the arms grabbed to a fixed point (grabbing arm) while the other conducts the task (operation arm). The goal was to evaluate the positioning accuracy of the aerial platform and the end effector when the grabbing arm is used as position sensor, as well as to analyze the behavior of the robot during the aerial physical interaction on flight. The paper proposed a control scheme that exploits the information provided by the joint sensors of the grabbing arm for estimating the relative position of the aerial platform w.r.t. (with respect to) the grabbing point. A deflection-based Cartesian impedance control was designed for the compliant arm, allowing the generation of forces that help the aerial platform to maintain the reference position when it is disturbed due to external forces. The proposed methods were validated in an indoor testbed with a lightweight and compliant dual arm aerial manipulation robot.


Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Selçuk Kizir ◽  
Ali Elşavi

SUMMARY Impedance control is one of the interaction and force control methods that has been widely applied in the research of robotics. In this paper, a new position-based fractional-order impedance control scheme is proposed and applied to a 2 DOF serial manipulator. An RR robot manipulator with full arm dynamics and its environment were designed using Matlab/Simulink. The position control of the manipulator was utilized based on computed torque control to cancel out the nonlinearities existing on the dynamic model of the robot. Parameters of classical impedance controller (CIC) and proposed fractional-order impedance controller (FOIC) were optimized in order to minimize impact forces for comparison of the results in three conditions. In CIC condition: three constant parameters of the impedance controller were optimized: in Frac_λμ condition: Only non-integer parameters of the FOIC were re-optimized after the parameters in CIC had been accepted, and in Frac_all condition: all parameters of the FOIC were re-optimized. In order to show the effectiveness of the proposed method, simulations were conducted for all cases and performance indices were computed for the interaction forces. Results showed that impacts were reduced with an improvement of 26.12% from CIC to Frac_ λμ and an improvement of 47.21% from CIC to Frac_all. The proposed scheme improves the impedance behavior and robustness showing better impact absorption performance, which is needed in many challenging robotic tasks and intelligent mechatronic devices.


2020 ◽  
pp. 107754632096620
Author(s):  
Babak Naseri Soufiani ◽  
Mehmet Arif Adli

The use of robots has been rapidly spreading in different daily applications. The transport of liquids by robot arms without causing any slosh is one of such applications which has recently taken the attention of researchers. Liquid transfer by dual-arm robots causes challenging problems because, in the process of dual-arm cooperation, a closed kinematic chain is formed and a set of constraints appears in motion, which increases the complexity of the process. In this study, an expanded impedance control was proposed for a dual-arm cooperative robot to achieve high speed for the transfer of a liquid-filled cylindrical container without sloshing. The impedance control method provides efficient results in controlling multi-robot interactions. However, a conventional impedance control is incapable of suppressing the slosh during liquid transfer. Therefore, in this study, we expand the impedance control by introducing a slosh suppression term, which leads to suppressing the slosh successfully during the transport of a liquid container. The effectiveness of the proposed controller was demonstrated for liquid transfer in a 2-D plane.


2017 ◽  
Vol 20 (K1) ◽  
pp. 35-41
Author(s):  
Nguyen Quoc Chi ◽  
Nguyen Tien Khang

In this paper, a control scheme is proposed for an automated container crane. The proposed control scheme includes position control (for the trolley) and sway control algorithms (for the payload) where PID control is used for position control and PD control is assigned for sway control. The proposed control scheme employs the feedback signal of the sway angle, which is acquired by a vision system. The idea to employ the vision system is to overcome the difficulty in installing a conventional sensor system for measuring the sway angle. Numerical simulations and experiments have been carried out to verify the effectiveness of the proposed control scheme.


Author(s):  
Oladayo S Ajani ◽  
Samy FM Assal

Recently, people with upper arm disabilities due to neurological disorders, stroke or old age are receiving robotic assistance to perform several activities such as shaving, eating, brushing and drinking. Although the full potential of robotic assistance lies in the use of fully autonomous robotic systems, these systems are limited in design due to the complexities and the associated risks. Hence, rather than the shared controlled or active robotic systems used for such tasks around the head, an adaptive compliance control scheme-based autonomous robotic system for beard shaving assistance is proposed. The system includes an autonomous online face detection and tracking as well as selected geometrical features-based beard region estimation using the Kinect RGB-D camera. Online trajectory planning for achieving the shaving task is enabled; with the capability of online re-planning trajectories in case of unintended head pose movement and occlusion. Based on the dynamics of the UR-10 6-DOF manipulator using ADAMS and MATLAB, an adaptive force tracking impedance controller whose parameters are tuned using Genetic Algorithm (GA) with force/torque constraints is developed. This controller can regulate the contact force under head pose changing and varying shaving region stiffness by adjusting the target stiffness of the controller. Simulation results demonstrate the system capability to achieve beard shaving autonomously with varying environmental parameters that can be extended for achieving other tasks around the head such as feeding, drinking and brushing.


2021 ◽  
pp. 108128652110108
Author(s):  
Emilio Turco ◽  
Emilio Barchiesi ◽  
Francesco dell’Isola

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.


2021 ◽  
Vol 69 (6) ◽  
pp. 550-561
Author(s):  
Mark Verjans ◽  
Lovis Phlippen ◽  
Zongshuo Li ◽  
Philipp Schleer ◽  
Klaus Radermacher

Abstract A novel approach for a patient transportation aid for emergency medical services bases on a wheel hub stair-climbing mechanism, which currently requires a manual adjustment relative to the stair edges. In this paper, an approach for an automation is presented which utilizes two distance sensors to characterize stairs and determine the relative position to them. A controller can then adjust the system’s position automatically. A user supervision concept copes with sensor inaccuracies or errors, resulting in a semi-automatic process. Within a formative usability study ( n = 11 n=11 users) the algorithm was able to reconstruct the stairs and drive the system neither falling down nor colliding with steps. The semi-automatic process reduced climbing time by 59 % and the participants reported a higher subjective usability compared to manual stair climbing.


Sign in / Sign up

Export Citation Format

Share Document