Humanoid adaptive locomotion control through a bioinspired CPG-based controller

Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Chenpeng Yao ◽  
Chengju Liu ◽  
Li Xia ◽  
Ming Liu ◽  
Qijun Chen

Abstract To achieve adaptive gait planning of humanoid robots, a hierarchical central pattern generator (H-CPG) model with a basic rhythmic signal generation layer and a pattern formation layer is proposed to modulate the center of mass (CoM) and the online foot trajectory. The entrainment property of the CPG is exploited for adaptive walking in the absence of a priori knowledge of walking conditions, and the sensory feedback is applied to modulate the generated trajectories online to improve walking adaptability and stability. The developed control strategy is verified using a humanoid robot on sloped terrain and shows good performance.

2009 ◽  
Vol 21 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Kensuke Harada ◽  
◽  
Mitsuharu Morisawa ◽  
Shin-ichiro Nakaoka ◽  
Kenji Kaneko ◽  
...  

For the purpose of realizing the humanoid robot walking on uneven terrain, this paper proposes the kinodynamic gait planning method where both kinematics and dynamics of the system are considered. We can simultaneously plan both the foot-place and the whole-body motion taking the dynamical balance of the robot into consideration. As a dynamic constraint, we consider the differential equation of the robot's CoG. To solve this constraint, we use a walking pattern generator. We randomly sample the configuration space to search for the path connecting the start and the goal configurations. To show the effectiveness of the proposed methods, we show simulation and experimental results where the humanoid robot HRP-2 walks on rocky cliff with hands contacting the environment.


2006 ◽  
Vol 12 (1) ◽  
pp. 63-88 ◽  
Author(s):  
Jimmy Or

Recently, there has been a lot of interest in building anthropomorphic robots. Research on humanoid robotics has focused on the control of manipulators and walking machines. The contributions of the torso towards ordinary movements (such as walking, dancing, attracting mates, and maintaining balance) have been neglected by almost all humanoid robotic researchers. We believe that the next generation of humanoid robots will incorporate a flexible spine in the torso. To meet the challenge of controlling this kind of high-degree-of-freedom robot, a new control architecture is necessary. Inspired by the rhythmic movements commonly exhibited in lamprey locomotion as well as belly dancing, we designed a controller for a simulated belly-dancing robot using the lamprey central pattern generator. Experimental results show that the proposed lamprey central pattern generator module could potentially generate plausible output patterns, which could be used for all the possible spine motions with minimized control parameters. For instance, in the case of planar spine motions, only three input parameters are required. Using our controller, the simulated robot is able to perform complex torso movements commonly seen in belly dancing as well. Our work suggests that the proposed controller can potentially be a suitable controller for a high-degree-of-freedom, flexible spine humanoid robot. Furthermore, it allows us to gain a better understanding of belly dancing by synthesis.


2012 ◽  
Vol 197 ◽  
pp. 415-422 ◽  
Author(s):  
Hong Liu ◽  
Qing Sun

It is a great challenge to plan motion for humanoid robots in complex environments especially when the terrain is cluttered and discrete. To address this problem, a novel method is proposed in this paper by planning the gait according to the stance sequence and ZMP (Zero Moment Point) reference. It consists of two components: an adaptive footstep planner and a walking pattern generator. The adaptive footstep planner can generate the stance path according to the walking rules and adjust the orientation of body relevantly. As the footstep locations are determined, Linear Inverted Pendulum Model (LIPM) is used to generate the walking pattern with a moving ZMP reference. As demonstrated in experiments on the humanoid robot HOAP-2, our method can successfully plan footstep trajectories as well as generate the stable and natural-looking gait in typical cluttered and discrete environments.


2016 ◽  
Vol 13 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Yukitoshi Minami Shiguematsu ◽  
Przemyslaw Kryczka ◽  
Kenji Hashimoto ◽  
Hun-Ok Lim ◽  
Atsuo Takanishi

We propose a novel heel-contact toe-off walking pattern generator for a biped humanoid robot. It is divided in two stages: a simple model stage where a Linear Inverted Pendulum (LIP) based heel-contact toe-off walking model based on the so-called functional rockers of the foot (heel, ankle and forefoot rockers) is used to calculate step positions and timings, and the Center of Mass (CoM) trajectory taking step lengths as inputs, and a multibody dynamics model stage, where the final pattern to implement on the humanoid robot is obtained from the output of the first simple model stage. The final pattern comprises the Zero Moment Point (ZMP) reference, the joint angle references and the end effector references. The generated patterns were implemented on our robotic platform, WABIAN-2R to evaluate the generated walking patterns.


Author(s):  
Sebastien Cotton ◽  
Philippe Fraisse ◽  
Andrew P. Murray

This paper proposes an analysis of the manipulability of the Center of Mass (CoM) of humanoid robots. Starting from the dynamic equations of humanoid robots, the operational space formulation is used to express the dynamics of humanoid robots at their CoM and under their specific characteristics: a free-floating base, forces at contact points, and dynamic balance constraints. After a review of the kinematic manipulability of the CoM, the concept of dynamic manipulability of the CoM is introduced. The latter represents the ability of a humanoid robot to generate a spatial motion under a stability criterion. The size and shape of the dynamic manipulability of the CoM are a function of the joint torque limitations, the contact forces and the zero moment point used as a stability criteria. Two calculations of the CoM dynamic manipulability are proposed, a fast ellipsoid approximation, and the exact polyhedron computation. A case study illustrates the proposed approach on the HOAP3 humanoid robot and its use for mechanical design optimization.


Robotica ◽  
2013 ◽  
Vol 32 (3) ◽  
pp. 413-431 ◽  
Author(s):  
Mohammad-Ali Nikouei Mahani ◽  
Shahram Jafari ◽  
Hadi Rahmatkhah

SUMMARYPush recovery is one of the most challenging problems for the current humanoid robots. The importance of push recovery can be well observed in the real environment. The critical issue for a humanoid is to maintain and recover its balance against any disturbances. In this research a new stereovision approach is proposed to estimate the robot deviation angle and consequently, the movement of center of mass of the robot is calculated. Then, two novel strategies have been devised to recover the balance of the humanoid which are called “knee strategy” and “knee-hip strategy.” Also, a mathematical model validates the efficiency of the proposed strategies as demonstrated in the paper. Experiments have been conducted on a humanoid robot and demonstrate that the predicted robot deviation angle, using stereovision technique, converges to the actual deviation angle. Stable regions of proposed strategies illustrate that the humanoid can recover its stability in a robust manner. Vision-based estimation also shows a higher correlation to actual deviation angle and a lower fluctuation compared with the output of the acceleration sensor.


2012 ◽  
Vol 09 (01) ◽  
pp. 1250005 ◽  
Author(s):  
YOUNG-DAE HONG ◽  
JONG-HWAN KIM

In this paper, an evolutionary optimized footstep planner for the navigation of humanoid robots is proposed. A footstep planner based on a univector field navigation method is proposed to generate a command state (CS) as an input to a modifiable walking pattern generator (MWPG) at each footstep. The MWPG generates associated trajectories of every leg joint to follow the given CS. In order to satisfy various objectives in the navigation, the univector fields are optimized by evolutionary programming. The three objectives, shortest elapsed time to get to a destination, safety without obstacle collision, and less energy consumption, are considered with mechanical constraints of a real humanoid robot, that is, the maximum step length and allowable yawing range of the feet. The effectiveness of the proposed algorithm is demonstrated through both computer simulation and experiment for a small-sized humanoid robot, HanSaRam-IX.


2006 ◽  
Vol 03 (01) ◽  
pp. 1-19 ◽  
Author(s):  
KENSUKE HARADA ◽  
SHUUJI KAJITA ◽  
KENJI KANEKO ◽  
HIROHISA HIRUKAWA

This paper studies real-time gait planning for a humanoid robot. By simultaneously planning the trajectories of the COG (Center of Gravity) and the ZMP (Zero Moment Point), a fast and smooth change of gait can be realized. The change of gait is also realized by connecting the newly calculated trajectories to the current ones. While we propose two methods for connecting two trajectories, i.e. the real-time method and the quasi-real-time one, we show that a stable change of gait can be realized by using the quasi-real-time method even if the change of the step position is significant. The effectiveness of the proposed methods are confirmed by simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document