Observer design for apex height and vertical velocity of a single-leg hopping robot during stance phase

Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ashish Prakash ◽  
Gagan Deep Meena

Abstract This article proposes an observer design for two important variables in the studies of single-leg hopping robot (SLHR), the apex height, and the vertical velocity of SLHR during its stance phase. At first, the Euler–Lagrange (EL) dynamics of SLHR are obtained and apex height is identified in the state-space representation of the EL dynamics. Apex height is the state variable that represents the robot body’s height at the top point, which keeps on changing as the robot functions. Vertical velocity is the velocity of the robot in the vertical direction. An observer design is presented in this article which will estimate these variables when required. The quality of the estimation is validated by the simulation results where the estimation error is zero which means the model output is correct and observer performance is good.

2020 ◽  
Author(s):  
Lázaro Ismael Hardy Llins ◽  
Daniel Coutinho

This paper addresses the design of state observers for linear discrete-time descriptor systems. Assuming that the original descriptor system is completely observable, an equivalent (standard) state-space representation of the system is proposed which preserves the system observability. Then, an LMI based approach is proposed for designing a Luenberger-like observer. In addition, a separation principle is demonstrated considering the estimation error dynamics and the closed-loop representation of the original descriptor system. Then, the observer design is extended to cope with model disturbances in an H1 sense. The eectiveness of the proposed methodology is illustrated by numerical examples.


2020 ◽  
Vol 42 (10) ◽  
pp. 1871-1881 ◽  
Author(s):  
Morteza Motahhari ◽  
Mohammad Hossein Shafiei

This paper is concerned with the design of a finite-time positive observer (FTPO) for continuous-time positive linear systems, which is robust regarding the L2-gain performance. In positive observers, the estimation of the state variables is always nonnegative. In contrast to previous positive observers with asymptotic convergence, an FTPO estimates positive state variables in a finite time. The proposed FTPO observer, using two Identity Luenberger observers and based on the impulsive framework, estimates exactly the state variables of positive systems in a predetermined time interval. Furthermore, sufficient conditions are given in terms of linear matrix inequalities (LMIs) to guarantee the L2-gain performance of the estimation error. Finally, the performance and robustness of the proposed FTPO are validated using numerical simulations.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
J. A. Tenreiro Machado

This paper studies the chromosome information of twenty five species, namely, mammals, fishes, birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space representation of dynamical systems is formulated. Based on this algorithm, the information of each chromosome is converted into a bidimensional distribution. The plots are then analyzed and characterized by means of Shannon entropy. The large volume of information is integrated by averaging the lengths and entropy quantities of each species. The results can be easily visualized revealing quantitative global genomic information.


2006 ◽  
Vol 3 (1) ◽  
pp. 37
Author(s):  
Razidah Ismail

The state space modeling approach was developed to cope with the demand and performance due to the increase in system complexity, which may have multiple inputs and multiple outputs (MIMO). This approach is based on time-domain analysis and synthesis using state variables. This paper describes the development of a state space representation of a furnace system of a combined cycle power plant. Power plants will need to operate optimally so as to stay competitive, as even a small improvement in energy efficiency would involve substantial cost savings. Both the quantitative and qualitative analyses of the state space representation of the furnace system are discussed. These include the responses of systems excited by certain inputs and the structural properties of the system. The analysis on the furnace system showed that the system is bounded input and bounded output stable, controllable and observable. In practice, the state space formulation is very important for numerical computation and controller design, and can be extended for time-varying systems.


Sign in / Sign up

Export Citation Format

Share Document