Variation in the retail value of beef carcasses as affected by fatness, conformation and different butchery techniques

1984 ◽  
Vol 8 ◽  
pp. 114-114
Author(s):  
A. V. Fisher ◽  
A. J. Brown

There are several aspects of carcass composition and quality which, as an integrated whole, determine carcass value. However, it is convenient, and informative, to restrict the study to quantitative (gravimetric) data and to remove the effect of carcass weight. If this is done, and if requirements to meet standard joints or cuts are imposed, there are only two factors which affect value: (a) the proportion of saleable meat in the carcass and (b) its distribution amongst joints of different value. There is an overriding importance of (a) in this context and the commercial significance of carcass classification schemes is dependent on the accuracy with which the proportion of saleable meat in carcasses can be predicted.

Author(s):  
A J Kempster ◽  
G L Cook ◽  
M Grantley-Smith

1The relationship between diet and health is now a major factor in the development of production and marketing strategies for the British meat industry, following Government recommendations that people should be encouraged to eat less fat. It has emphasised the need for accurate information on the body composition of national livestock populations and the fat content of the meat and meat products derived from them. This paper collates the information available for cattle, sheep and pigs, and provides base-line (1984) estimates of national lean and fat production. Changes that have taken place over the past ten years are also examined.2The basic framework for making estimates was the distribution of carcasses between fatness ranges in the national carcass classification schemes operated by the Meat and Livestock Commission (MLC). The distribution for cattle was obtained from a random 1 in 3 sample of beef carcasses classified (0.25 of all clean beef carcasses were classified).3A computer spread-sheet was constructed relating the midpoint means of the fatness ranges to carcass tissue proportions and chemical composition. Regressions for predicting carcass lean and fat content were calculated from accumulated data from surveys of commercial carcasses and breed evaluations for cattle (Kempster, 1986), for sheep (Kempster, Jones and Wolf, 1986a) and for pigs (Diestre and Kempster, 1985). Key regressions are given in Table 1. Carcass lean and fat are defined as in the standard MLC tissue separation procedure. Regressions for estimating carcass lipid content: were obtained using data from several studies. The principal study involved carcasses from breed comparison trials (MAFF/MLC, 1982). Details of the other data sets are given by Kempster, Cook and Grantley-Smith (1986b). Key relationships are given in Table 2.4Estimates of the composition of carcasses in different classification fatness ranges are given in Table 3. These are for 'clean' cattle, sheep and pigs, but estimates were also made for cull cows and cull ewes.5National estimates of carcass composition and the weights of lean and fat produced in 1975/77 and 1984 are given in Table 4. The carcass composition of beef was the same in 1974/76 and 1984 but the average carcass weight has increased by 20kg. The implication of this is that changes in breed and production system have created the potential for leaner carcasses but that the beef industry has preferred to exploit this potential by increasing carcass weights. An increase of 20kg is equivalent to about 15gAg separable fat in carcass on the basis of typical regressions within breed and system.The carcasses of clean sheep in 1984 were estimated to be slightly lighter and leaner than those in 1977. Information on marketing patterns suggests that there has been little change in production methods (as far as they affect composition) and that lambs are now being slaughtered early, possibly stimulated by the pattern of Guide Prices in the EEC Sheep Meat Regime.In marked contrast to cattle and sheep, the separable fat content of the average pig carcass has fallen from 274g/kg in 1975 to 228g/kg in 1985, with a small increase in carcass weight. It is estimated that the increase in the use of entire males has contributed 5g/kg to the overall change.6The estimates in the paper are considered to be the best available with current information but because of the limitations of the data may be subject to error. Possible sources of error are discussed by Kempster et al (1986b). The authors would be pleased to know of data relating physical and chemical composition that could be used to refine the estimates.


1979 ◽  
Vol 30 (6) ◽  
pp. 1207 ◽  
Author(s):  
JM Thompson ◽  
KD Atkins ◽  
AR Gilmour

Half-carcasses of 108 wether and ewe lambs from six genotypes, slaughtered at 34, 44 and 54 kg liveweight, were dissected into subcutaneous fat, intermuscular fat, muscle, bone and connective tissue. The six genotypes were the progeny of Dorset Horn and Border Leicester rams mated to Merino, Corriedale and Border Leicester x Merino first-cross ewes. As carcass weight increased, the proportion of subcutaneous and intermuscular fat increased (b > 1 ; P < 0.05) and the proportion of muscle and bone decreased (b < 1; P < 0.05). Lambs sired by Border Leicester rams had more subcutaneous fat (12.7%), more intermuscular fat (7.6%) and more bone (5.7%) than lambs sired by Dorset Horn rams at the same carcass weight (P< 0.05). Similarly, lambs sired by Dorset Horn rams had more muscle (7.2%) than lambs sired by Border Leicester rams at the same carcass weight (P < 0.05). Breed of dam had no effect on carcass composition. Wether lambs had a greater proportion of bone (5.7%) than ewe lambs at the same carcass weight (P < 0.05). The breed of sire effect and the lack of a breed of dam effect on carcass composition, in conjunction with estimated mature weights for the breeds, suggest possible differences between sire and dam breeds in the partitioning of fat between the carcass and non-carcass depots. ____________________ *Part I, Aust. J. Agric. Res., 30: 1197 (1979).


1972 ◽  
Vol 15 (3) ◽  
pp. 229-237
Author(s):  
C. E. Hinks ◽  
J. H. D. Prescott

SUMMARYTwo experiments concerning the effects, on the carcass and meat characteristics of 18-months-old Friesian steers, of variation in grazing intensity and the level of barley feeding with silage are reported.Groups of 12 steers were grazed at different intensities over 5-month grazing periods, such that live-weight differences of 38 kg and 16 kg were recorded at housing. No compensatory growth was recorded during the subsequent winter feeding period.Whilst the grazing treatments had little effect on carcass or meat quality, higher levels of barley feeding with silage over the winter period (710 v. 410 kg/steer) had significant effects on live-weight gain, and increased carcass weight by 21 kg at slaughter. The higher yield of carcass weight was reflected in significant differences in carcass composition, joint proportions and retail cut-out value. Sixty per cent of the carcass weight difference was removed as trim fat. Differences in carcass fatness were not associated with any differences in eating quality.


1980 ◽  
Vol 30 (1) ◽  
pp. 135-152 ◽  
Author(s):  
J. D. Wood ◽  
H. J. H. MacFie ◽  
R. W. Pomeroy ◽  
D. J. Twinn

ABSTRACTIn order to investigate the effects of type of breed on carcass composition, an examination was made of 361 lambs from four breeds: Clun Forest and Colbred (termed ewe breeds); and Suffolk and Hampshire (termed ram breeds). The animals were in four carcass weight groups averaging 15, 17, 19 and 21 kg.Percentage subcutaneous fat was influenced more by carcass weight than by breed, whereas both carcass weight and breed had similar effects on percentage lean. At the mean carcass weight of 18 kg, Colbreds, the leanest breed, had a similar value for percentage lean (about 57 % of carcass tissue weight) to the carcasses over all breeds weighing 15 kg; and Cluns, the fattest breed, had a similar value (about 54%) to those weighing 21 kg. Since the ram breeds were intermediate in composition between the two ewe breeds there was no effect of type of breed on carcass composition. The breed differences were related to eventual mature size and to the stage of maturity at each carcass weight, as judged by body length and bone weight measurements. However, Colbreds were bigger and leaner than published estimates of their mature weight suggested. Humerus weight was a good predictor of lean or total fat weight, explaining 83 % ofvariation when used as a predictor along with carcass weight.Type of breed had a marked effect on internal fat deposition, the ewe breeds having heavier weights of both kidney knob and channel fat (KKCF) and caul fat (omental fat) than the ram breeds; and on the length oflimb bones, the ewe breeds having longer but thinner bones than the ram breeds. The order of the relative growth of the tissues and fat depots was: subcutaneous fat > caul fat > KKCF > intermuscular fat > lean > bone. Therefore, the internal fat depots were later maturing than intermuscular fat.The percentage of prime cuts in the carcass was not affected by carcass weight. Colbreds had significantly lower values than the other breeds. Suffolks had the lowest lean to bone ratio.


Author(s):  
B G Lowman ◽  
D R Neilson ◽  
N A Scott ◽  
E A Hunter

A previous investigation, reported at the Winter Meeting 1985, showed significant effects of growth promoters on carcass composition and on the eating quality of sirloin steaks. The growth promoters investigated factorially were (a) hormonal implants (heifers, Zeranol; steers, Zeranol + Trembolone acetate), (b) feed additive (Avotan) and (c) fishmeal. The experiment was repeated during the winter of 1984/85, with the eating quality investigation expanded to cover some 192 households, using sirloin steaks from all 64 cattle involved in the investigation. In addition, the rate of carcass cooling in the left-hand side of each animal was measured using electronic probe thermometers placed in the longissimus dorsi immediately after slaughter. This data was used to test the hypothesis that rate of carcass cooling was negatively related to the fat content of the carcass and with overall eating quality due to the effects of cold shortening.


1986 ◽  
Vol 66 (2) ◽  
pp. 541-545
Author(s):  
S. D. M. JONES ◽  
A. K. W. TONG ◽  
A. H. MARTIN ◽  
W. M. ROBERTSON

Over a 2-yr period, 409 beef carcasses were used to assess the differences of ribbing site (11/12th vs. 12/13th) on fat thickness measurements and the use of these measurements to predict carcass composition. Minimum fat thickness taken at the location specified for use under Canadian beef carcass grading procedures was 1.6 mm less, averaged over all carcasses at the 13th rib, compared with the same measurement taken at the 12th rib. Prediction equations for estimating carcass lean or fat content based on coefficients of determination and residual standard deviations had similar precision using fat thickness measurements from either ribbing site. These results are discussed in reference to National carcass grading procedures. Key words: Carcass grading, fat thickness, carcass composition


1984 ◽  
Vol 8 ◽  
pp. 103-103
Author(s):  
A. J. Brown ◽  
B. W. Butler-Hogg ◽  
J. D. Wood

Future improvements in British lamb sales depend on increasing the lean to fat ratio in cuts and joints offered for sale, since numerous surveys have shown an aversion to fat on the part of consumers. This ratio can be changed by manipulating breed and live weight at slaughter, since breeds of large mature size slaughtered at light weights are considerably leaner than those of small mature size slaughtered at heavy weights. However, there are other aspects of carcass value than overall lean and fat content. These include factors such as the proportions of individual joints and their composition. This study was carried out to examine carcass composition and carcass quality changes between 12 and 24 kg cold carcass weight (CCW) in 317 castrated males and 238 females from six pure breeds.


1964 ◽  
Vol 15 (2) ◽  
pp. 333
Author(s):  
NM Tulloh

An investigation was made of published data on the carcass composition of cattle, based on dissection of carcasses into bone, muscle, and fat. The data included females and castrate males, without regard to breed, age, or nutritional history. It was found that the relation between each carcass component and empty body weight could be described by a linear regression equation by using logarithmic values for the variables. The differential growth ratios given by the regression equations indicated, as empty body weight increased, that: (a) the weight of each of the dissected carcass components (i.e. bone, muscle, and fat) also increased; (b) the proportion of carcass bone fell, that of fat increased, and that of muscle remained almost constant. The relations between dissected bone, muscle, and fat and carcass weight were similar to those obtained between dissected carcass components and empty body weight. To obtain evidence on whether the differential growth ratios between dissected carcass components and empty body weight or carcass weight showed any change throughout post-natal life, quadratic equations were computed by using logarithmic values for the variables. These ratios fell for all carcass components, but in only three out of six equations were the quadratic terms statistically significant. This re-examination of published data indicates that any comparisons of the carcass composition of cattle may be invalid unless they are made at the same body (or carcass) weights. In addition, a comparison made by using regression equations, with the variables expressed as percentages, is confusing because it may not reveal abnormal composition in animals of particular weights. A satisfactory type of analysis can be made by using regression techniques with the original data. The above principles of analysis were applied in a breed comparison study of the carcass composition of 28 Hereford, 25 Angus, and 18 Shorthorn steers. These cattle comprised two age groups, born in 1957 and 1958 respectively. Carcass composition was estimated by dissecting, into bone, muscle and fat, the left and right 11th ribcuts from the carcasses of the 1957 steers, and the 9th–10th–11th rib-cuts from the left sides of the carcasses of the 1958 steers. When the rib-cut data were plotted, the relations appeared linear; the data were therefore analysed by using linear regressions with arithmetical values for the variables. Results showed that the fat content was greater and the muscle content smaller in the rib-cuts of the Shorthorns in both years than in those of either Hereford or Angus steers. Differences between Herefords and Angus were small. In view of the high correlations found by other workers between the results of rib-cut dissections and carcass composition, it is assumed that the breed differences reported here in rib-cut composition were reflections of breed differences in carcass composition. The carcass compositions of the cattle used in the breed comparison study were also estimated from hot carcass weight by using regression equations derived from the literature. A comparison of the two methods of estimating carcass composition suggests that, if hot carcass weight is to be used, regression equations will need to be developed for each breed in various environments.


Sign in / Sign up

Export Citation Format

Share Document