Broad-based calibrations of in vitro gas production of forages by near-infrared reflectance spectroscopy

1998 ◽  
Vol 22 ◽  
pp. 234-237
Author(s):  
M. Herrero ◽  
N. S. Jessop

There is increasing demand to obtain fast and accurate dynamic nutritional information from forages. Near-infrared reflectance spectroscopy (NIRS) offers the possibility for obtaining such information for a range of nutritional constituents of foods. Herrero et al. (1996 and 1997) calibrated in vitro gas production measurements of a single grass species by NIRS. There would be greater practical benefit if the gas production predictions could be obtained using calibrations derived from a wide range of plant species, since a single equation could be used for all forages. The objective of this study was to investigate if in vitro gas production measurements of a broad based sample population could be calibrated by NIRS.

2003 ◽  
Vol 2003 ◽  
pp. 50-50 ◽  
Author(s):  
D.K. Lovett ◽  
E.R. Deaville ◽  
D.I. Givens ◽  
E. Owen

Maize silage consists of a starch and a fibrous fraction, both of which should be considered when assessing nutritive value. The in vitro evaluation of starch disappearance is laborious and costly. The near infrared reflectance spectroscopy (NIRS) technique requires limited sample preparation and is quick to operate once a calibration is established. This study investigated the potential of NIRS to predict maize starch disappearance in vitro.


2001 ◽  
Vol 52 (8) ◽  
pp. 809 ◽  
Author(s):  
J. P. Ferrio ◽  
E. Bertran ◽  
M. Nachit ◽  
C. Royo ◽  
J. L. Araus

Carbon isotope discrimination (Δ13C) in grain is a potentially useful trait in breeding programs that aim to increase the yield of wheat and other cereals. Near infrared reflectance spectroscopy (NIRS) is used in routine assays to determine grain and flour quality. This study assesses the ability of NIRS to predict Δ13C in mature kernels of durum wheat. Plants were grown in north-west Syria as this location provided 3 distinct Mediterranean trials that covered a wide range for Δ13C values in grains (from about 12.9‰ to 17.6‰). We measured the spectral reflectance signature between 1100 and 2500 nm in samples from the same flour used in the conventional (i.e. mass spectrometry) determinations of Δ13C. By using principal components regression and partial least squares regression (PLSR), a model of the association between conventional laboratory analysis and these spectra was produced. Global regressions, which included samples from all 3 trials, and local models, which used samples from only one trial, were built and then validated with sample sets not included in calibration procedures. In global models, strong significant correlations (P < 0.001) were found between NIRS-predicted Δ13C and measured Δ13C values. PLSR gave r 2 values of 0.86 and 0.82 for calibration and validation sets, respectively. Although less strongly correlated, all local models selected for a subset of samples with significantly higher Δ13C values. Local models also performed well when selecting samples from the other 2 trials. The advantages and possible limitations of NIRS are further discussed.


1989 ◽  
Vol 69 (3) ◽  
pp. 833-839 ◽  
Author(s):  
S. S. BUGHRARA ◽  
D. A. SLEPER ◽  
R. L. BELYEA ◽  
G. C. MARTEN

Little information is available on estimating in vitro dry matter digestibility (IVDMD) of alfalfa (Medicago sativa L.) herbage by a prepared cellulase solution (PCS) and then using these IVDMD estimates to calibrate near infrared reflectance spectroscopy (NIRS) equations. Objectives were to compare PCS digestion to that by two rumen fermentation procedures, including true in vitro digestibility (TIVD), and develop NIRS equations to estimate TIVD, neutral detergent fiber, and acid detergent fiber of alfalfa hay. Seventy-eight alfalfa samples, having a wide range in herbage quality, were analyzed for IVDMD using five different PCS procedures and two rumen fermentation procedures (true and apparent in vitro digestibility). The best NIRS calibration equation for TIVD had R2 of 0.92 and a standard error of selection of 20.7 g kg−1. Correlations between IVDMD and TIVD obtained by the various PCS assays ranged from 0.91 to 0.96 (P < 0.01), with regression coefficients ranging from 0.94 to 0.98. We concluded that PCS gave rapid and accurate estimates of TIVD and that NIRS could accurately estimate TIVD of a wide range of alfalfa herbage quality.Key words: Acid detergent solubles, fungal cellulase solubles, in vitro digestible dry matter, Medicago sativa L., neutral detergent solubles, alfalfa


1988 ◽  
Vol 18 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Carol A. Wessman ◽  
John D. Aber ◽  
David L. Peterson ◽  
Jerry M. Melillo

Near infrared reflectance spectroscopy was evaluated as a method for measuring nitrogen and lignin content in foliage of native forest and prairie species. Near infrared reflectance spectra (1590 to 2357 nm) were obtained for 163 samples of dried green leaves and leaf litter from 18 deciduous and 2 coniferous tree species. Forty additional spectra were obtained from grass species. Reflectance (R) spectra were recorded as log (1/R) and transformed to the first and second derivative of log (1/R). Multiple linear regressions, predicting wet chemistry values based on near infrared reflectance spectra, yielded correlation coefficients of 0.98 for Kjeldahl nitrogen and 0.78 for lignin, with standard errors of 0.11% for nitrogen and 2.9% for lignin. Results suggest that near infrared reflectance spectroscopy is very effective for rapid (approximately 2 min per sample) determination of foliar lignin and nitrogen and should be considered for use as a routine analytical method.


Sign in / Sign up

Export Citation Format

Share Document