Soil seed bank and vegetation dynamics in Sahelian fallows; the impact of past cropping and current grazing treatments

2004 ◽  
Vol 20 (6) ◽  
pp. 683-691 ◽  
Author(s):  
Bruno Hérault ◽  
Pierre Hiernaux

The soil seed bank in a 5-y-old Sahelian fallow was studied through seed extraction and compared with germinations recorded either in controlled conditions, ex situ in a glasshouse, or in the field. The influence of phosphorus fertilizer and mulch application during the preceding crop period, and that of seasonal grazing regimes applied the last 2 y of fallowing, were assessed on the composition of the seed stock. Ctenium elegans, Fimbristylis hispidula, Merremia pinnata and Phyllanthus pentandrus accounted together for 75% of extracted seeds, 72% of ex situ, and 62% of in situ seedlings. Mulch treatment was correlated with the first axis of the canonical correspondence analyses performed on the seedling datasets. Mulch and phosphorus fertilizer treatments held similar responses, as they both favoured the seed bank of erect dicotyledons such as P. pentandrus and Cassia mimosoides. On the whole, the effects of grazing remained modest compared with the residual effects of past crop management practices. However, seedling densities increased as a result of dry-season grazing, while the soil seed bank decreased with wet-season grazing. Grazing also reduced the spatial heterogeneity of the seed bank rather than the overall number of species.

2015 ◽  
Vol 25 (4) ◽  
pp. 386-394 ◽  
Author(s):  
Diego F. Escobar E. ◽  
Victor J. M. Cardoso

AbstractMiconia chartacea is a widely distributed tree in Brazil, occurring at altitudes ranging from 300 m to 1900 m in the Caatinga, Cerrado and Atlantic Forest biomes. In this work we attempted to classify M. chartacea seeds regarding their behaviour during storage and their germination syndrome and to determine, from a storage test in Cerrado soil and laboratory conditions in situ and ex situ, the longevity of seeds, as well as the capacity of the species to form a soil seed bank. The results suggested that M. chartacea seeds form a transient soil seed bank in the Cerrado and can be classified as orthodox in terms of storage behaviour, although the seeds are dispersed with a relatively high water content. The life span of seeds was favoured in soil-stored seeds in comparison with dry storage at 25°C, whereas storage at low temperatures prevented a decrease of the seed's germinability with storage time (330 d). M. chartacea seeds are dispersed during the dry season and germinate during the next rainy season, which can be classified as an intermediate–dry germination syndrome. Seeds of this species are dispersed in the Cerrado when temperatures and soil moisture are relatively low, which favours the formation of a soil seed bank, considering that the seeds tolerate desiccation and their longevity is favoured by low temperatures. A transient seed bank type is favoured by the loss of viability in storage at warm temperatures linked to the rainy season, and the predictable seasonal variations in climate in the region, with germination being restricted to the beginning of the rainy season.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 500
Author(s):  
Zong Zhao ◽  
Yong Liu ◽  
Hongyan Jia ◽  
Wensheng Sun ◽  
Angang Ming ◽  
...  

Objective: To investigate the impact of different slope directions on the quantity and quality of the soil seed bank and seedling germination process of Castanopsis hystrix plantations. Method: Fixed sample plots in forest stands of Castanopsis hystrix were established on different slope directions (sunny slope, semi-sunny slope, semi-shady slope, and shady slope). The characteristics of the forest stand were investigated, and per-wood scaling was carried out. The temporal dynamics of the seed rain and seed bank were quantified using seed rain collectors and by collecting soil samples from different depths. The quantity and quality of the seeds were determined, and the vigor of mature seeds was measured throughout the study. Results: (1) The diffusion of Castanopsis hystrix seed rain started in mid-September, reached its peak from late October to early November, and ended in mid-December. (2) The dissemination process, occurrence time, and composition of the seed rain varied between the different slope directions. The seed rain intensity on the semi-sunny slope was the highest (572.75 ± 9.50 grains∙m−2), followed by the sunny slope (515.60 ± 10.28 grains∙m−2), the semi-shady slope (382.13 ± 12.11 grains∙m−2), and finally the shady slope (208.00 ± 11.35 grains∙m−2). The seed rain on the sunny slope diffused earliest and lasted the longest, while the seed rain on the shady slope diffused latest and lasted the shortest time. Seed vigor and the proportion of mature seeds within the seed rain were greatest on the semi-sunny slope, followed by the sunny slope, semi-shady slope, and the shady slope. (3) From the end of the seed rain to August of the following year, the amount of total reserves of the soil seed banks was highest on the semi-sunny slope, followed by the sunny slope then the semi-shady slope, and it was the lowest on the shady slope. The amount of mature, immature, gnawed seeds and seed vigor of the soil seed bank in various slope directions showed a decreasing trend with time. The seeds of the seed bank in all slope directions were mainly distributed in the litter layer, followed by the 0–2 cm humus layer, and only a few seeds were present in the 2–5 cm soil layer. (4) The seedling density of Castanopsis hystrix differed significantly on the different slope directions. The semi-sunny slope had the most seedlings, followed by the sunny slope, semi-shady slope, and the shady slope. Conclusions: The environmental conditions of the semi-sunny slope were found to be most suitable for the seed germination and seedling growth of Castanopsis hystrix, and more conducive to the regeneration and restoration of its population.


2021 ◽  
Author(s):  
Amanda T. Nylund ◽  
Rickard Bensow ◽  
Mattias Liefvendahl ◽  
Arash Eslamdoost ◽  
Anders Tengberg ◽  
...  

<p>This interdisciplinary study with implications for fate and transport of pollutants from shipping, investigates the previously overlooked phenomenon of ship induced mixing. When a ship moves through water, the hull and propeller induce a long-lasting turbulent wake. Natural waters are usually stratified, and the stratification influences both the vertical and horizontal extent of the wake. The altered turbulent regime in shipping lanes governs the distribution of discharged pollutants, e.g. PAHs, metals, nutrients and non-indigenous species. The ship related pollutant load follows the trend in volumes of maritime trade, which has almost tripled since the 1980s. In heavily trafficked areas there may be one ship passage every ten minutes; today shipping constitutes a significant source of pollution.</p><p>To understand the environmental impact of shipping related pollutants, it is essential to know their fate following regional scale transport. However, previous modelling efforts assuming discharge at the surface will not adequately reflect the input values in the regional models. Therefore, it is urgent to bridge the gaps between the spatiotemporal scales from high-resolution numerical modeling of the flow hydrodynamics around the ship, mixing processes and interaction of the ship and wake with stratification, and parameterization in regional oceanographic modeling. Here this knowledge gap is addressed by combining an array of methods; in situ measurements, remote sensing and numerical flow modeling.</p><p>A bottom-mounted Acoustic Doppler Current Profiler was placed under a ship lane, for <em>in-situ</em> measurements of the vertical and temporal expansion of turbulent wakes. In addition, <em>ex-situ</em> measurements with Landsat 8 Thermal Infrared Sensor were used to estimate the longevity and spatial extent of the thermal signal from ship wakes. The computational modelling was conducted using well resolved 3D RANS modelling for the hull and the near wake (up to five ship lengths aft), a method typically used for the near wake behaviour in analysing the propulsion system. As this is not feasible to use for a far wake analysis, the predicted wake is then used as input for a 2D+time modelling for the sustained wake up to 30min after the ship passage. These results, both from measurements and numerical models, are then combined to analyse how ship-induced turbulence influence at what depth discharged pollutants will be found.</p><p>This first step to cover the mesoscales of the turbulent ship wake is necessary to assess the impact of ship related pollution. In-situ measurements show median wake depth 13.5m (max 31.5m) and median longevity 10min (max 29min). Satellite data show median thermal wake signal 13.7km (max 62.5km). A detailed simulation model will only be possible to use for the first few 100m of the ship wake, but the coupling to a simplified 2D+time modelling shows a promising potential to bridge our understanding of the impact of the ship wake on the larger scales. Our model results indicate that the natural stratification affects the distribution and retention of pollutants in the wake region. The depth of discharge and the wake turbulence characteristics will in turn affect the fate and transport of pollutants on larger spatiotemporal scales.</p>


2013 ◽  
Vol 27 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Mário Luiz Ribeiro Mesquita ◽  
Leonaldo Alves de Andrade ◽  
Walter Esfrain Pereira

2004 ◽  
Vol 24 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Getachew Tesfaye ◽  
Demel Teketay ◽  
Yoseph Assefa ◽  
Masresha Fetene
Keyword(s):  

2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 533
Author(s):  
Eva Čížková ◽  
Jana Navrátilová ◽  
Stanislav Martinát ◽  
Josef Navrátil ◽  
Ryan J. Frazier

The near elimination of inland salt marshes in Central Europe occurred throughout the 19th and 20th centuries, and the currently remaining marshes exist in a degraded condition. This work examines the impact of groundwater level on the growth of plants from a seed bank obtained from a degraded salt marsh in proximity to still existing one through an ex-situ experiment. An experimental tank was set up with the sample seed bank experiencing differing levels of water level. There were 1233 specimens of 44 taxa grown from the seed bank, of which 5 species were abundant, and 10 species are considered as halophytes. Only Lotus tenuis from halophytes was more abundant, and only five species of halophytes were represented by more than three individuals. The water level has a significant impact on the number of species (based on linear regression analysis) as well as species distribution among different water level treatments (a non-metric multidimensional analysis (nMDS) followed by linear regression). The results show a strong negative relationship between the average water level and the number of species. The water level did not affect the species composition of halophytes, but differences in individual species abundances were found among the halophytes. The species Bupleurum tenuissimum, Crypsis schoenoides, Melilotus dentatus, and Plantago maritima grew on the drier and non-inundated soils. Tripolium pannonicum, Spergularia maritima, and Lotus tenuis grew on both wet and dry soils. Trifolium fragiferum and Bolboschoenus maritimus were found in places with water stagnant at the soil level. Pulicaria dysenterica grew in inundated soil.


2008 ◽  
Vol 30 (2) ◽  
pp. 100-110 ◽  
Author(s):  
Fernanda Costa Maia ◽  
Manoel de Souza Maia ◽  
Renée M. Bekker ◽  
Rogério Previatti Berton ◽  
Leandro Sebastião Caetano

The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds


2020 ◽  
Author(s):  
Sereni Laura ◽  
Guenet Bertrand ◽  
Crouzet Olivier ◽  
Lamy Isabelle

<p>Among all pollutants, copper (Cu) is of major environmental and toxicological concern with contamination from various origins. Moreover as a cation, Cu is easily complexed by the negatively charged soil organic matter (OM) inducing high concentrations in upper layers of soils where OM dominates. Due to its biotic and abiotic interactions with soil constituents Cu is expected to affect several soil processes among them the soil respiration, but studies provided contrasting results as soil respiration have been shown to decrease or increase with soil contamination depending on the studies.</p><p>In this study, we aimed at assessing how soil respiration is affected by Cu contamination in order to quantifying as a first approach the GHG emissions for a contaminated soil. We performed a quantitative review of literature focusing on soil heterotrophic respiration (thus excluding autotrophic respiration from plants) which aimed at 1) assessing the impact of a copper contamination on soil carbon (C) mineralisation and thus CO<sub>2</sub> emissions, and 2) hierarchizing the determinants of such an impact on C mineralisation compare to the influence of pedo-climatic soil parameters such as pH, clay percentage or the type of climate.</p><p>On the basis of a selection of roughly 390 literature data, global main results showed a decrease in soil CO<sub>2</sub> emission with an increase in soil Cu contamination. Data from ex situ spiking experiments could be easily differentiated from the ones originated from in situ natural contamination due to their sharper decrease in soil organic carbon mineralisation. Interestingly, ex situ spikes data on the short term provided a threshold: an increase in soil CO<sub>2</sub> emissions was noticed for data below total soil Cu content of 180 mg kg<sup>-1</sup> while a decrease was observed above this concentration. On the contrary, long-term in situ contamination due to anthropogenic activities (urbanisation, agriculture …) did not significantly impact soil carbon mineralisation except when we focused on the high inputs of industrial contamination (smelter, composted plant…). Soil pH was found as a variable of interest as acidic soils were more sensitive to Cu contamination for C mineralisation than neutral or alkaline soils, while the % of clay and the type of climate did not add explanation to the variation in C mineralisation. These results are discussed and the collected data allowed us to propose a general equation quantifying how soil respiration can be affected by a Cu contamination.</p>


Sign in / Sign up

Export Citation Format

Share Document