A light and electron microscopic study of microsporogenesis in Azolla microphylla

Author(s):  
Y. R. Herd ◽  
E. G. Cutter ◽  
I. Watanabe

SynopsisMicrosporogenesis in cultured material of Azolla microphylla was studied with the light and transmission electron microscopes. The first formed sporangium, a megasporangium, aborts and several microsporangia develop below. Initially, a single sporogenous cell is present, surrounded by a single layered tapetum and the microsporangial wall. Subsequently, several sporogenous cells are connected by plasmodesmata. The microspore mother cells are less densely cytoplasmic than the tapetal cells. Callose-like material is deposited around the microspore mother cells, but disappears before meiosis. The tetrads of microspores contain well defined organelles but less dense cytoplasm than the surrounding periplasmodium. Electron dense material deposited on the plasma membrane of the microspores eventually forms the endospore. The unornamented exospore develops by continued deposition of electron dense material. Degeneration of the periplasmodium gives rise to membranous material which appears to form a template for the massulae.

1984 ◽  
Vol 62 (9) ◽  
pp. 1871-1879 ◽  
Author(s):  
M. P. Steinkamp ◽  
W. T. Doyle

Mature spores of Fossombronia longiseta (Metzgeriales, Codoniaceae) were examined with both scanning and transmission electron microscopes. Sporoderms are highly sculptured. The distal face markings consist of parallel ridges (cristae) or spines. The flattened proximal face has a series of short spinelike cristae, and a triradiate ridge mark sometimes is apparent. In section, the sporoderm consists of an intine and a two-layered exine. The inner exine layer consists of two lamellae, each of which contains a series of long, thin (3–4 nm), closely spaced, electron-lucent subunits; the subunits are separated by electron-dense material. The more or less solid outer exine consists of highly irregularly shaped lamellae, which also have a "white line" component. Amorphous, electron-dense material permeates these lamellae and fills the channels between the lamellae. The intine and much of the electron-dense material of the exine is removed by acetolysis. Spore wall ultrastructure in this species is complex compared with other species of the Metzgeriales and Jungermanniales that have been studied so far.


1989 ◽  
Vol 37 (7) ◽  
pp. 981-987 ◽  
Author(s):  
M Grote

The exine of birch pollen was examined by scanning and transmission electron microscopy in the native state and after fixation in different aqueous fixatives: glutaraldehyde + OsO4; glutaraldehyde + cetylpyridinium chloride (CPC) + OsO4; glutaraldehyde + cuprolinic blue (CB); and periodate + lysine + paraformaldehyde (PLP). The native pollen exine showed a thin (3-5-nm) border of electron-dense material lining the tectum and electron-dense material within microchannels and bacula cavities. Fixation with the addition of CPC resulted in a voluminous surface coat surrounding the pollen grain, but empty microchannels and bacula cavities. After fixation with the addition of CB, there was a thin surface coat, whereas microchannels and bacula cavities were partially filled with electron-dense material. The other fixatives led to empty microchannels and bacula cavities. There was no surface coat on the pollen grain. However, after all fixation procedures, a thin electron-dense border of the tectum remained visible. Concerning the electron-dense material filling microchannels and bacula cavities in the native pollen grain, the results obtained in the present study suggest that it is either completely lost (after conventional and PLP fixation) or, after fixation with a precipitating additive, partially (CB) or completely (CPC) solubilized and precipitated on the surface of the pollen grain as a surface coat.


2010 ◽  
Vol 55 (1) ◽  
Author(s):  
Lenka Šípková ◽  
Céline Levron ◽  
Mark Freeman ◽  
Tomáš Scholz

AbstractSpermiogenesis and spermatozoon ultrastructure of the tapeworm Parabothriocephalus gracilis were described using transmission electron microscopy (TEM). Spermiogenesis is characterized by the formation of a zone of differentiation with two centrioles associated with striated rootlets, and an intercentriolar body between them. The two flagella undergo a rotation of 90° until they become parallel to the median cytoplasmic extension with which they fuse. Electron-dense material is present in the apical region of the zone of differentiation in the early stages of spermiogenesis. This electron-dense material is characteristic for the orders Bothriocephalidea and Diphyllobothriidea. The mature spermatozoon contains two axonemes of the 9 + ‘1’ trepaxonematan pattern, nucleus, parallel cortical microtubules and electron-dense granules of glycogen. The anterior extremity of the spermatozoon exhibits a single helical electron-dense crested body 130 nm thick. One of the most interesting features is the presence of a ring of cortical microtubules surrounding the axoneme. This character has been reported only for species of the order Bothriocephalidea and may be unique in this cestode group.


1984 ◽  
Vol 32 (8) ◽  
pp. 869-871 ◽  
Author(s):  
M Grote ◽  
H G Fromme

Pollen from birch trees (Betula pendula) was fixed in glutaraldehyde containing 0.5% cetylpyridinium chloride (CPC), incubated with concanavalin A (Con A)-ferritin, postfixed in osmium, dehydrated, and embedded in Epon. On ultrathin sections, ferritin particles were observed closely associated with the electron-dense material precipitated by CPC on the surface of the pollen grains. Controls for CPC, which were fixed in glutaraldehyde alone, showed no electron-dense material on the surface. In controls for Con A, which were incubated in Con A-ferritin in the presence of the inhibitory sugar (alpha-methyl-D-mannopyranoside), no ferritin particles were observed. The above-described procedure thus allows the localization of sugar residues in highly soluble pollen wall glycoproteins.


Nematology ◽  
2003 ◽  
Vol 5 (2) ◽  
pp. 307-312
Author(s):  
Dianne Achor ◽  
Larry Duncan ◽  
Renato Inserra ◽  
Alberto Troccoli

AbstractMature female Gracilacus latescens are sedentary and remain attached by the stylet to the surface of timber bamboo roots (Phyllostachys bambusoides) for their entire life. Observations by transmission electron microscopy (TEM) of the anatomy of the anterior portion of the female body showed the stylet shaft surrounded by a thick stomatal wall sensu Endo (1983) and by large protractor muscles. Cross sections of the root at the site of nematode attachment showed accumulation of electron-opaque material between the nematode body and the epidermal wall penetrated by the stylet. Electron-dense material enwrapped the stylet from the point of its insertion in an epidermal cell wall until its end in the lumen of a sclerenchymal or cortical cell. Two to three cells are penetrated by the stylet. The electron-dense material appeared to originate from the walls of epidermal, cortical parenchymal and sclerenchymal cells perforated by the stylet. The thickness of this material increased with the number of sclerenchyma cell walls penetrated by the stylet. Cross sections of the enwrapped stylet showed it tightly encased in the electron-dense material, which appeared to anchor the stylet and consequently the nematode body to the root surface. A syncytium originates from the innermost cell reached by the enwrapped stylet and expands into the inner cortex and stele. Cell wall dissolution and pit fields are characteristics of the syncytium.


Author(s):  
U. B. Hezel ◽  
E. Zellmann ◽  
D. Hoffmeister

Chemical fixation, resin embedding and subsequent staining with heavy metals can both produce artefacts and limit the resolution in the electron microscopic specimen /1-5/. The objective is thus to observe the specimens in the electron microscope in the frozen-hydrated state, the one most similar to the native state.All preparation steps such as cryofixation, cryosectioning and cryotransfer to the cryo-transmission electron microscope (CryoTEM) should be performed below 145K /5/ in order to observe the specimen in a matrix of vitrified ice avoiding any crystallization artefacts. In the CryoTEM itself the temperature of the frozen-hydrated specimen should be kept much lower to avoid devitrification caused by the electron beam /1/. - To meet all these requirements a special cryotransfer system and cryostage for the Zeiss transmission electron microscopes have been developed /7/.


1993 ◽  
Vol 123 (2) ◽  
pp. 275-284 ◽  
Author(s):  
S R Wente ◽  
G Blobel

NUP116 encodes a 116-kD yeast nuclear pore complex (NPC) protein that is not essential but its deletion (nup116 delta) slows cell growth at 23 degrees C and is lethal at 37 degrees C (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). Electron microscopic analysis of nup116 delta cells shifted to growth at 37 degrees C revealed striking perturbations of the nuclear envelope: a double membrane seal that was continuous with the inner and outer nuclear membranes had formed over the cytoplasmic face of the NPCs. Electron-dense material was observed accumulating between the cytoplasmic face of these NPCs and the membrane seal, resulting in "herniations" of the nuclear envelope around individual NPCs. In situ hybridization with poly(dT) probes showed the accumulation of polyadenylated RNA in the nuclei of arrested nup116 delta cells, sometimes in the form of punctate patches at the nuclear periphery. This is consistent with the electron microscopically observed accumulation of electron-dense material within the nuclear envelope herniations. We propose that nup116 delta NPCs remain competent for export, but that the formation of the membrane seals over the NPCs blocks nucleocytoplasmic traffic.


1986 ◽  
Vol 64 (5) ◽  
pp. 1055-1068 ◽  
Author(s):  
I. Grant ◽  
W. D. Beversdorf ◽  
R. L. Peterson

The cytological development of male cells and the tapetum of male fertile and combined cytoplasmic triazine-resistant cyto-plasmic-genetic male sterile (ctr) lines of B. napus L. was studied using light, scanning electron, and transmission electron microscopy. Development of the cytoplasmic-genetic male sterile anther was similar to the normal anther up to and including meiotic prophase I. After this stage, degeneration of the microspore mother cells occurs within the callose walls, and tetrads of microspores are not formed. These degenerating microspore mother cells appear to develop numerous endoplasmic reticulum derived vesiculated structures, which may be involved in lysis of organelles. Degeneration occurs simultaneously with a proliferation of the tapetum, which eventually fills the anther locule. It is not clear whether the abortion of the microspore mother cells during meiosis stimulates proliferation of the tapetum or whether the proliferating tapetum actually interferes with microspore development thereby causing degeneration. Dilated endoplasmic reticulum cisternae containing crystalline-like deposits, and plastids with osmiophilic bodies, are frequent in cells of the proliferated tapetum of cytoplasmic-genetic male sterile anthers.


1998 ◽  
Vol 4 (S2) ◽  
pp. 740-741
Author(s):  
J. Liu ◽  
J.R. Ebner

Catalyst characterization plays a vital role in new catalyst development and in troubleshooting of commercially catalyzed processes. The ultimate goal of catalyst characterization is to understand the structure-property relationships associated with the active components and supports. Among many characterization techniques, only electron microscopy and associated analytical techniques can provide local information about the structure, chemistry, morphology, and electronic properties of industrial heterogeneous catalysts. Three types of electron microscopes are usually used for characterizing industrial supported catalysts: 1) scanning electron microscope (SEM), 2) scanning transmission electron microscope (STEM), and 3) transmission electron microscope (TEM). Each type of microscope has its unique capabilities. However, the integration of all electron microscopic techniques has proved invaluable for extracting useful information about the structure and the performance of industrial catalysts.Commercial catalysts usually have a high surface area with complex geometric structures to enable reacting gases or fluids to access as much of the active surface of the catalyst as possible.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Sign in / Sign up

Export Citation Format

Share Document