cytoplasmic extension
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 2)

2019 ◽  
Vol 116 (40) ◽  
pp. 19952-19962 ◽  
Author(s):  
Kuai Yu ◽  
Tao Jiang ◽  
YuanYuan Cui ◽  
Emad Tajkhorshid ◽  
H. Criss Hartzell

ANO1 (TMEM16A) is a Ca2+-activated Cl− channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid–protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2. Three of these sites captured 85% of all ANO1–PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane–cytosol interface found 3 regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same 3 sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid side chains and phosphate/hydroxyl groups on PI(4,5)P2. Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl− ions. We propose a model consisting of a network of 3 PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.


2019 ◽  
Author(s):  
Kuai Yu ◽  
Tao Jiang ◽  
YuanYuan Cui ◽  
Emad Tajkhorshid ◽  
H. Criss Hartzell

AbstractANO1 (TMEM16A) is a Ca2+-activated Cl− channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Here we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2. Three of these sites captured 85% of all ANO1 - PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane-cytosol interface found three regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same three sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid sidechains and phosphate/hydroxyl groups on PI(4,5)P2. Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl−ions. We propose a model consisting of a network of three PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.Significance statementMembrane proteins dwell in a sea of phospholipids that not only structurally stabilize the proteins by providing a hydrophobic environment for their transmembrane segments, but also dynamically regulate protein function. While many cation channels are known to be regulated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), relatively little is known about anion channel regulation by phosphoinositides. Using a combination of patch clamp electrophysiology and atomistic molecular dynamics simulations, we have identified several PI(4,5)P2 binding sites in ANO1 (TMEM16A), a Cl− channel that performs myriad physiological functions from epithelial fluid secretion to regulation of electrical excitability. These binding sites form a band at the cytosolic interface of the membrane that we propose constitute a network to dynamically regulate this highly allosteric protein.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Vitus A. Apalangya ◽  
Vijaya K. Rangari ◽  
Boniface J. Tiimob ◽  
Shaik Jeelani ◽  
Temesgen Samuel

Nanocomposite electrospun fibers were fabricated from poly(lactic) acid (PLA) and needle-like hydroxyapatite nanoparticles made from eggshells. The X-ray diffraction spectrum and the scanning electron micrograph showed that the hydroxyapatite particles are highly crystalline and are needle-liked in shape with diameters between 10 and 20 nm and lengths ranging from 100 to 200 nm. The microstructural, thermal, and mechanical properties of the electrospun fibers were characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and tensile testing techniques. The SEM study showed that both pristine and PLA/EnHA fibers surfaces exhibited numerous pores and rough edges suitable for cell attachment. The presence of the rod-liked EnHA particles was found to increase thermal and mechanical properties of PLA fibers relative to pristine PLA fibers. The confocal optical images showed that osteoblast cells were found to attach on dense pristine PLA and PLA/HA-10 wt% fibers after 48 hours of incubation. The stained confocal optical images indicated the secretion of cytoplasmic extension linking adjoining nuclei after 96 hours of incubation. These findings showed that eggshell based nanohydroxyapatite and poly(lactic acid) fibers could be potential scaffold for tissue regeneration.


2018 ◽  
Author(s):  
Arne Raasakka ◽  
Salla Ruskamo ◽  
Julia Kowal ◽  
Huijong Han ◽  
Anne Baumann ◽  
...  

AbstractCompact myelin forms the basis of nerve insulation essential for higher vertebrates. Dozens of myelin membrane bilayers undergo tight stacking, and in the peripheral nervous system, this is partially enabled by myelin protein zero (P0). Consisting of an immunoglobulin (Ig)-like extracellular domain, a single transmembrane helix, and a cytoplasmic extension (P0ct), P0 harbours an important task in ensuring the integrity of compact myelin in the extracellular compartment, referred to as the intraperiod line. Several disease mutations resulting in peripheral neuropathies have been identified for P0, reflecting its physiological importance, but the arrangement of P0 within the myelin ultrastructure remains obscure. We performed a biophysical characterization of recombinant P0ct. P0ct contributes to the binding affinity between apposed cytoplasmic myelin membrane leaflets, which not only results in fluidity changes of the bilayers themselves, but also potentially involves the rearrangement of the Ig-like domains in a manner that stabilizes the intraperiod line. Transmission electron cryomicroscopy of native full-length P0 showed that P0 stacks lipid membranes by forming antiparallel dimers between the extracellular Ig-like domains. The zipper-like arrangement of the P0 extracellular domains between two membranes explains the double structure of the myelin intraperiod line. Our results contribute to the understanding of PNS myelin, the role of P0 therein, and the underlying molecular foundation of compact myelin stability in health and disease.


2016 ◽  
Vol 148 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Helmuth A. Sanchez ◽  
Nefeli Slavi ◽  
Miduturu Srinivas ◽  
Vytas K. Verselis

Connexin 26 (Cx26) is a transmembrane protein that forms hexameric hemichannels that can function when unopposed or dock to form intercellular gap junction channels. Aberrantly functioning unopposed hemichannels are a common feature of syndromic deafness associated with mutations in Cx26. In this study, we examine two different mutations at the same position in the N-terminal domain of Cx26, N14K and N14Y, which have been reported to produce different phenotypes in patients. We find that both N14K and N14Y, when expressed alone or together with wild-type (WT) Cx26, result in functional hemichannels with widely disparate functional properties. N14K currents are robust, whereas N14Y currents are small. The two mutants also exhibit opposite shifts in voltage-dependent loop gating, such that activation of N14K and N14Y is shifted in the hyperpolarizing and depolarizing directions, respectively. Deactivation kinetics suggests that N14K stabilizes and N14Y destabilizes the open state. Single N14K hemichannel recordings in low extracellular Ca2+ show no evidence of stable closing transitions associated with loop gating, and N14K hemichannels are insensitive to pH. Together, these properties cause N14K hemichannels to be particularly refractory to closing. Although we find that the unitary conductance of N14K is indistinguishable from WT Cx26, mutagenesis and substituted cysteine accessibility studies suggest that the N14 residue is exposed to the pore and that the differential properties of N14K and N14Y hemichannels likely result from altered electrostatic interactions between the N terminus and the cytoplasmic extension of TM2 in the adjacent subunit. The combined effects that we observe on loop gating and pH regulation may explain the unusual buccal cutaneous manifestations in patients carrying the N14K mutation. Our work also provides new considerations regarding the underlying molecular mechanism of loop gating, which controls hemichannel opening in the plasma membrane.


2010 ◽  
Vol 55 (1) ◽  
Author(s):  
Lenka Šípková ◽  
Céline Levron ◽  
Mark Freeman ◽  
Tomáš Scholz

AbstractSpermiogenesis and spermatozoon ultrastructure of the tapeworm Parabothriocephalus gracilis were described using transmission electron microscopy (TEM). Spermiogenesis is characterized by the formation of a zone of differentiation with two centrioles associated with striated rootlets, and an intercentriolar body between them. The two flagella undergo a rotation of 90° until they become parallel to the median cytoplasmic extension with which they fuse. Electron-dense material is present in the apical region of the zone of differentiation in the early stages of spermiogenesis. This electron-dense material is characteristic for the orders Bothriocephalidea and Diphyllobothriidea. The mature spermatozoon contains two axonemes of the 9 + ‘1’ trepaxonematan pattern, nucleus, parallel cortical microtubules and electron-dense granules of glycogen. The anterior extremity of the spermatozoon exhibits a single helical electron-dense crested body 130 nm thick. One of the most interesting features is the presence of a ring of cortical microtubules surrounding the axoneme. This character has been reported only for species of the order Bothriocephalidea and may be unique in this cestode group.


2009 ◽  
Vol 54 (3) ◽  
Author(s):  
Jordi Miquel ◽  
Zdzisław Świderski ◽  
Pilar Foronda ◽  
Jordi Torres ◽  
Carlos Feliu

AbstractThe ultrastructure of spermatogenesis of Taenia taeniaeformis is described for the first time by means of transmission electron microscopy (TEM). Mature testes contain all stages of spermatogenesis; primary spermatogonia are usually situated at the periphery and mature spermatozoa in the centre of testes. The general process is similar to that described in other cestodes. Six incomplete, synchronic cytokineses occur: four mitotic and two meiotic cell divisions. All these divisions occur simultaneously, resulting in a rosette cluster of four tertiary spermatogonia, then eight quaternary spermatogonia, and subsequently sixteen primary spermatocytes. All of these enter into a growth period and their enlarged nuclei move to the periphery of cells of the rosettes. The first meiotic division forms thirty-two secondary spermatocytes and after the second meiotic division, there are sixty-four spermatids. Spermiogenesis in T. taeniaeformis corresponds to the Ba and Marchand’s Type 3 and begins with the formation of a differentiation zone in the form of a conical projection of cytoplasm delimited by a ring of arching membranes and surrounded by submembranous cortical microtubules. Within this area, there are two centrioles, orthogonally disposed, and vestigial striated rootlets. Only one of the centrioles develops a flagellum that grows externally to the cytoplasmic extension. Posteriorly, a flagellar rotation inferior to 90° occurs and the flagellum becomes parallel to the cytoplasmic extension. Later, the two processes fuse during the so-called proximodistal fusion. The nucleus elongates and moves into the cytoplasmic extension. In the final stage of spermiogenesis, a single crested body appears at the base of the differentiating spermatozoon. Finally, the ring of arching membranes constricts and the young spermatozoon detaches from the residual cytoplasm. Ultrastructural aspects of spermatogenesis are compared with that of other cestodes studied to date, particularly of the family Taeniidae.


2008 ◽  
Vol 53 (1) ◽  
Author(s):  
Jordi Miquel ◽  
Zdzisław Świderski ◽  
John Mackiewicz ◽  
Mohammed Ibraheem

AbstractThe ultrastructure of spermiogenesis in Wenyonia virilis Woodland, 1923, a caryophyllaeid cestode from the silurid Nile fish Synodontis schall (Bloch et Schneider, 1801), is described by means of transmission electron microscopy (TEM) for the first time. Spermiogenesis follows the characteristic caryophyllidean type and is initiated by the formation of a differentiation zone. This area, delimited at its base by a ring of arching membranes and bordered by cortical microtubules, contains two centrioles associated with typical striated rootlets with a reduced intercentriolar body between them. The apical area of the differentiation zone exhibits electron-dense material that is present only during the early stages of spermiogenesis. Only one of the centrioles develops into a free flagellum that grows at an angle of >90° in relation to the cytoplasmic extension. Spermiogenesis is also characterized by a flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic extension. The most interesting features observed in W virilis are the presence of a reduced, very narrow intercentriolar body and the unique type of flagellar rotation >90°. Results are compared with those described in two caryophyllideans, Glaridacris catostomi Cooper, 1920 and Khawia armeniaca (Cholodkovski, 1915). Contrary to the original report of Świderski and Mackiewicz (2002), that flagellar rotation has never been observed in spermiogenesis of G. catostomi, re-assessment of their description and illustrations leads us to conclude that flagellar rotation must logically occur in that species. The value of various morphological features of sperm in phylogenetic inference is discussed.


2007 ◽  
Vol 81 (3) ◽  
pp. 219-226 ◽  
Author(s):  
A.A. Ashour ◽  
K. Garo ◽  
I.S. Gamil

AbstractThe process of spermiogenesis in two paramphistomes,Sandonia sudanensisandBasidiodiscus ectorchisfrom the Nile fishSynodontis schallin Egypt was studied by transmission electron microscopy. Spermiogenesis is characterized by the outgrowth of the zone of differentiation, presenting two basal bodies separated by a microtubule organizing centre, each basal body developing into a flagellum. Proximodistal fusion of these flagella with a median cytoplasmic extension gives rise to the spermatozoon. The mature spermatozoon possesses two axonemes of the 9+‘1’ pattern typical of parasitic helminths. There are few ultrastructural studies on spermiogenesis in paramphistomes, which are considered the most primitive digenetic trematodes. The present study provides new and more detailed information on this process, including the presence of a lateral flange and external ornamentation of the cell membrane. The value of sperm ultrastructure as a taxonomic tool in phylogeny is also discussed.


Sign in / Sign up

Export Citation Format

Share Document