Techniques to preserve soluble surface components in birch pollen wall: a scanning and transmission electron microscopic study.

1989 ◽  
Vol 37 (7) ◽  
pp. 981-987 ◽  
Author(s):  
M Grote

The exine of birch pollen was examined by scanning and transmission electron microscopy in the native state and after fixation in different aqueous fixatives: glutaraldehyde + OsO4; glutaraldehyde + cetylpyridinium chloride (CPC) + OsO4; glutaraldehyde + cuprolinic blue (CB); and periodate + lysine + paraformaldehyde (PLP). The native pollen exine showed a thin (3-5-nm) border of electron-dense material lining the tectum and electron-dense material within microchannels and bacula cavities. Fixation with the addition of CPC resulted in a voluminous surface coat surrounding the pollen grain, but empty microchannels and bacula cavities. After fixation with the addition of CB, there was a thin surface coat, whereas microchannels and bacula cavities were partially filled with electron-dense material. The other fixatives led to empty microchannels and bacula cavities. There was no surface coat on the pollen grain. However, after all fixation procedures, a thin electron-dense border of the tectum remained visible. Concerning the electron-dense material filling microchannels and bacula cavities in the native pollen grain, the results obtained in the present study suggest that it is either completely lost (after conventional and PLP fixation) or, after fixation with a precipitating additive, partially (CB) or completely (CPC) solubilized and precipitated on the surface of the pollen grain as a surface coat.

1984 ◽  
Vol 32 (8) ◽  
pp. 869-871 ◽  
Author(s):  
M Grote ◽  
H G Fromme

Pollen from birch trees (Betula pendula) was fixed in glutaraldehyde containing 0.5% cetylpyridinium chloride (CPC), incubated with concanavalin A (Con A)-ferritin, postfixed in osmium, dehydrated, and embedded in Epon. On ultrathin sections, ferritin particles were observed closely associated with the electron-dense material precipitated by CPC on the surface of the pollen grains. Controls for CPC, which were fixed in glutaraldehyde alone, showed no electron-dense material on the surface. In controls for Con A, which were incubated in Con A-ferritin in the presence of the inhibitory sugar (alpha-methyl-D-mannopyranoside), no ferritin particles were observed. The above-described procedure thus allows the localization of sugar residues in highly soluble pollen wall glycoproteins.


Author(s):  
Y. R. Herd ◽  
E. G. Cutter ◽  
I. Watanabe

SynopsisMicrosporogenesis in cultured material of Azolla microphylla was studied with the light and transmission electron microscopes. The first formed sporangium, a megasporangium, aborts and several microsporangia develop below. Initially, a single sporogenous cell is present, surrounded by a single layered tapetum and the microsporangial wall. Subsequently, several sporogenous cells are connected by plasmodesmata. The microspore mother cells are less densely cytoplasmic than the tapetal cells. Callose-like material is deposited around the microspore mother cells, but disappears before meiosis. The tetrads of microspores contain well defined organelles but less dense cytoplasm than the surrounding periplasmodium. Electron dense material deposited on the plasma membrane of the microspores eventually forms the endospore. The unornamented exospore develops by continued deposition of electron dense material. Degeneration of the periplasmodium gives rise to membranous material which appears to form a template for the massulae.


2010 ◽  
Vol 55 (1) ◽  
Author(s):  
Lenka Šípková ◽  
Céline Levron ◽  
Mark Freeman ◽  
Tomáš Scholz

AbstractSpermiogenesis and spermatozoon ultrastructure of the tapeworm Parabothriocephalus gracilis were described using transmission electron microscopy (TEM). Spermiogenesis is characterized by the formation of a zone of differentiation with two centrioles associated with striated rootlets, and an intercentriolar body between them. The two flagella undergo a rotation of 90° until they become parallel to the median cytoplasmic extension with which they fuse. Electron-dense material is present in the apical region of the zone of differentiation in the early stages of spermiogenesis. This electron-dense material is characteristic for the orders Bothriocephalidea and Diphyllobothriidea. The mature spermatozoon contains two axonemes of the 9 + ‘1’ trepaxonematan pattern, nucleus, parallel cortical microtubules and electron-dense granules of glycogen. The anterior extremity of the spermatozoon exhibits a single helical electron-dense crested body 130 nm thick. One of the most interesting features is the presence of a ring of cortical microtubules surrounding the axoneme. This character has been reported only for species of the order Bothriocephalidea and may be unique in this cestode group.


Nematology ◽  
2003 ◽  
Vol 5 (2) ◽  
pp. 307-312
Author(s):  
Dianne Achor ◽  
Larry Duncan ◽  
Renato Inserra ◽  
Alberto Troccoli

AbstractMature female Gracilacus latescens are sedentary and remain attached by the stylet to the surface of timber bamboo roots (Phyllostachys bambusoides) for their entire life. Observations by transmission electron microscopy (TEM) of the anatomy of the anterior portion of the female body showed the stylet shaft surrounded by a thick stomatal wall sensu Endo (1983) and by large protractor muscles. Cross sections of the root at the site of nematode attachment showed accumulation of electron-opaque material between the nematode body and the epidermal wall penetrated by the stylet. Electron-dense material enwrapped the stylet from the point of its insertion in an epidermal cell wall until its end in the lumen of a sclerenchymal or cortical cell. Two to three cells are penetrated by the stylet. The electron-dense material appeared to originate from the walls of epidermal, cortical parenchymal and sclerenchymal cells perforated by the stylet. The thickness of this material increased with the number of sclerenchyma cell walls penetrated by the stylet. Cross sections of the enwrapped stylet showed it tightly encased in the electron-dense material, which appeared to anchor the stylet and consequently the nematode body to the root surface. A syncytium originates from the innermost cell reached by the enwrapped stylet and expands into the inner cortex and stele. Cell wall dissolution and pit fields are characteristics of the syncytium.


1984 ◽  
Vol 62 (9) ◽  
pp. 1871-1879 ◽  
Author(s):  
M. P. Steinkamp ◽  
W. T. Doyle

Mature spores of Fossombronia longiseta (Metzgeriales, Codoniaceae) were examined with both scanning and transmission electron microscopes. Sporoderms are highly sculptured. The distal face markings consist of parallel ridges (cristae) or spines. The flattened proximal face has a series of short spinelike cristae, and a triradiate ridge mark sometimes is apparent. In section, the sporoderm consists of an intine and a two-layered exine. The inner exine layer consists of two lamellae, each of which contains a series of long, thin (3–4 nm), closely spaced, electron-lucent subunits; the subunits are separated by electron-dense material. The more or less solid outer exine consists of highly irregularly shaped lamellae, which also have a "white line" component. Amorphous, electron-dense material permeates these lamellae and fills the channels between the lamellae. The intine and much of the electron-dense material of the exine is removed by acetolysis. Spore wall ultrastructure in this species is complex compared with other species of the Metzgeriales and Jungermanniales that have been studied so far.


1993 ◽  
Vol 123 (2) ◽  
pp. 275-284 ◽  
Author(s):  
S R Wente ◽  
G Blobel

NUP116 encodes a 116-kD yeast nuclear pore complex (NPC) protein that is not essential but its deletion (nup116 delta) slows cell growth at 23 degrees C and is lethal at 37 degrees C (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). Electron microscopic analysis of nup116 delta cells shifted to growth at 37 degrees C revealed striking perturbations of the nuclear envelope: a double membrane seal that was continuous with the inner and outer nuclear membranes had formed over the cytoplasmic face of the NPCs. Electron-dense material was observed accumulating between the cytoplasmic face of these NPCs and the membrane seal, resulting in "herniations" of the nuclear envelope around individual NPCs. In situ hybridization with poly(dT) probes showed the accumulation of polyadenylated RNA in the nuclei of arrested nup116 delta cells, sometimes in the form of punctate patches at the nuclear periphery. This is consistent with the electron microscopically observed accumulation of electron-dense material within the nuclear envelope herniations. We propose that nup116 delta NPCs remain competent for export, but that the formation of the membrane seals over the NPCs blocks nucleocytoplasmic traffic.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
Masahiro Ono ◽  
Kaoru Aihara ◽  
Gompachi Yajima

The pathogenesis of the arteriosclerosis in the acute myocardial infarction is the matter of the extensive survey with the transmission electron microscopy in experimental and clinical materials. In the previous communication,the authors have clarified that the two types of the coronary vascular changes could exist. The first category is the case in which we had failed to observe no occlusive changes of the coronary vessels which eventually form the myocardial infarction. The next category is the case in which occlusive -thrombotic changes are observed in which the myocardial infarction will be taken placed as the final event. The authors incline to designate the former category as the non-occlusive-non thrombotic lesions. The most important findings in both cases are the “mechanical destruction of the vascular wall and imbibition of the serous component” which are most frequently observed at the proximal portion of the coronary main trunk.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Sign in / Sign up

Export Citation Format

Share Document