The Quadratic form for Radial Acceleration, in the Theory of Relativity

1924 ◽  
Vol 22 (3) ◽  
pp. 248-252
Author(s):  
R. Hargreaves

§ 1. In the transformation corresponding to constant acceleration, and in the resulting quadratic form, there is an arbitrary constant. In Einstein's formula for central acceleration a mass m defining the acceleration appears, but no arbitrary constant. In seeking to account for, or to repair, the deficiency I retained all constants naturally arising in the integration of the differential equations, and it then appeared that the result could be obtained by transformation. It will be convenient to state the transformation at the outset, and then to examine the differential equations with a view to a clear understanding of the assumptions made in reaching the more general result.

Author(s):  
Cécile Penland ◽  
Brian D Ewald

Stochastic descriptions of multiscale interactions are more and more frequently found in numerical models of weather and climate. These descriptions are often made in terms of differential equations with random forcing components. In this article, we review the basic properties of stochastic differential equations driven by classical Gaussian white noise and compare with systems described by stable Lévy processes. We also discuss aspects of numerically generating these processes.


2006 ◽  
Vol 13 (4) ◽  
pp. 687-691
Author(s):  
Guram Gogishvili

Abstract Let 𝑚 ∈ ℕ, 𝑓 be a positive definite, integral, primitive, quaternary quadratic form of the determinant 𝑑 and let ρ(𝑓,𝑚) be the corresponding singular series. When studying the best estimates for ρ(𝑓,𝑚) with respect to 𝑑 and 𝑚 we proved in [Gogishvili, Trudy Tbiliss. Univ. 346: 72–77, 2004] that where 𝑏(𝑘) is the product of distinct prime factors of 16𝑘 if 𝑘 ≠ 1 and 𝑏(𝑘) = 3 if 𝑘 = 1. The present paper proves a more precise estimate where 𝑑 = 𝑑0𝑑1, if 𝑝 > 2; 𝑕(2) ⩾ –4. The last estimate for ρ(𝑓,𝑚) as a general result for quaternary quadratic forms of the above-mentioned type is unimprovable in a certain sense.


2021 ◽  
Author(s):  
Friedrich Pfeiffer

Abstract Constraints in multibody systems are usually treated by a Lagrange I - method resulting in equations of motion together with the constraint forces. Going from non-minimal coordinates to minimal ones opens the possibility to project the original equations directly to the minimal ones, thus eliminating the constraint forces. The necessary procedure is described, a general example of combined machine-process dynamics discussed and a specific example given. For a n-link robot tracking a path the equations of motion are projected onto this path resulting in quadratic form linear differential equations. They define the space of allowed motion, which is generated by a polygon-system.


1971 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
G. A. Thurston

A modification of Newton’s method is applied to the solution of the nonlinear differential equations for clamped, shallow spherical caps under uniform pressure. The linear form of Newton’s method or quasi-linearization breaks down at limit points of the differential equations. A simplified “quadratic form” is derived in the paper and shown to be satisfactory for continuing the solution past the limit point and into the postbuckling region. Results for the buckling pressures defined by the limit points agree with published results for perfect caps. New results are presented for imperfect caps that check experiment.


The criteria for distinguishing between the maximum and minimum values of integrals have been investigated by many eminent mathematicians. In 1786 Legendre gave an imperfect discussion for the case where the function to be made a maximum is ʃ f (x,y, dy / dx ) dx . Nothing further seems to have been done till 1797, when Lagrange pointed out, in his ‘Théorie des Fonctions Analytiques,' published in 1797, that Legendre had supplied no means of showing th at the operations required for his process were not invalid through some of the multipliers becoming zero or infinite, and he gives an example to show that Legendre’s criterion, though necessary, was not sufficient. In 1806 Brunacci, an Italian mathematician, gave an investigation which has the important advantage of being short, easily compiehensible, and perfectly general in character, but which is open to the same objection as that brought against Legendre’s method. The next advance was made in 1836 by the illustrious Jacobi, who treats only of functions containing one dependent and one independent variable. Jacobi says (Todhunter, Art. 219, p. 243): “I have succeeded in supplying a great deficiency in the Calculus of Variations. In problems on maxima and minima which depend on this calculus no general rule is known for deciding whether a solution really gives a maximum or a minimum, or neither. It has, indeed, been shown that the question amounts to determining whether the integrals of a certain system of differential equations remain finite throughout the limits of the integral which is to have a maximum or a minimum value. But the integrals of these differential equations were not known, nor had any other method been discovered for ascertaining whether they remain finite throughout the required interval. I have, however, discovered that these integrals can be immediately obtained when We have integrated the differential equations which must be satisfied in order that the first variation may vanish.” Jacobi then proceeds to state the result of his transformation for the cases where the function to be integrated contains x, y, dy / dx , and x, y, dy / dx 2 , and in this solution the analysis appears free from all objection, though, where he proceeds to consider the general case, the investigation does not appear to be quite satisfactory in form, inasmuch as higher and higher differential coefficients of By are successively introduced into the discussion (see Art. 5). Jacobi’s analysis is much more complicated than Brunacci's, its advantage being that the coefficients used in the transformation could be easily determined; hence it supplied the means of ascertaining whether they became infinite or not.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022080
Author(s):  
V L Litvinov ◽  
A V Tarakanov

Abstract The problem of oscillations of objects with moving boundaries, formulated as a differential equation with boundary and initial conditions, is a non-classical generalization of a problem of hyperbolic type. To facilitate the construction of a solution to this problem and justify the choice of a solution form, equivalent integro-differential equations are constructed with symmetric and time-dependent kernels and integration limits varying in time. The method for constructing solutions of integro-differential equations is based on the direct integration of differential equations in combination with the standard replacement of the desired function with a new variable. The method is extended to a wider class of model boundary value problems that take into account the bending stiffness of an oscillating object, the resistance of the environment, and the rigidity of the substrate. Particular attention is paid to the consideration of the most common in practice case when external disturbances act at the boundaries. The solution is made in dimensionless variables accurate to second-order values of smallness with respect to small parameters characterizing the speed of the border.


1969 ◽  
Vol 22 (5) ◽  
pp. 605
Author(s):  
NK Sinha

The differential equations for the shock parameters along shock rays in the case of propagation of a spherically developed shock wave in a polytrope with a toroidal magnetic field, obtained in Part I, have been integrated numerically for a particular set of initial values. The results are compared with the corresponding results in Part I obtained by neglecting certain small terms and it is found that the effect of this omission is not significant. This substantiates the results and justifies the simplification made in Part 1.


2020 ◽  
pp. 92-107
Author(s):  
Rasha H. Ibraheem

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.


1916 ◽  
Vol 8 (123) ◽  
pp. 258-262
Author(s):  
Eric H. Neville

There are two ways in which the solution of a particular linear differential equation may “fail” although the solulion of a more general equation obtained by replacing certain constants by parameters is complete.where D as usual stands for d/dx.For the general equation(D — l)(D — m)y = enxthe perfectly general solution isA, B being independent arbitrary constants, but if we attempt to apply this solution to the particular equation (l), we find in the first place that the coincidence of n with l and m renders the first term infinite, and in the second place that the coincidence of m with l leaves us with only one effective constant, A + B. The method by which in the commoner textbooks the passage from the general solution to that of a particular equation is made in such cases as this is unconvincing.


1875 ◽  
Vol 23 (156-163) ◽  
pp. 510-510

Given an equation of the form z = ϕ ( x 1 , x 2 , ..... x n+m , a 1 , a 2 ,. . . . a n ), we obtain by differentiation with respect to each of the n + m independent variables x 1 , x 2 , ..... x n+m , and elimination of the n arbitrary constant a 1 , a 2 ,. . . . a n a system of m +1 non-linear partial differential equations of the first order. Of this system the given equation may be said to be "complete primitive.”


Sign in / Sign up

Export Citation Format

Share Document