Note on the scattering of water waves by a vertical barrier

Author(s):  
W. E. Williams

Introduction. In this note an alternative approach is presented to the problem of the scattering of small amplitude two-dimensional water waves by a fixed barrier, one edge of the barrier lying in the free surface of the water. This problem was first solved by Ursell ((1)) and generalizations of the problem have been considered by John ((2)) and Lewin ((3)).

Author(s):  
Calin Iulian Martin

We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue ‘Nonlinear water waves’.


2013 ◽  
Vol 717 ◽  
pp. 523-534 ◽  
Author(s):  
Vladimir Kozlov ◽  
Nikolay Kuznetsov

AbstractThe two-dimensional free-boundary problem describing steady gravity waves with vorticity on water of finite depth is considered. It is proved that no small-amplitude waves are supported by a horizontal shear flow whose free surface is still, that is, it is stagnant in a coordinate frame such that the flow is time-independent in it. The class of vorticity distributions for which such flows exist includes all positive constant distributions, as well as linear and quadratic ones with arbitrary positive coefficients.


Author(s):  
Biswajit Basu ◽  
Calin I. Martin

AbstractWe are concerned here with an analysis of the nonlinear irrotational gravity water wave problem with a free surface over a water flow bounded below by a flat bed. We employ a new formulation involving an expression (called flow force) which contains pressure terms, thus having the potential to handle intricate surface dynamic boundary conditions. The proposed formulation neither requires the graph assumption of the free surface nor does require the absence of stagnation points. By way of this alternative approach we prove the existence of a local curve of solutions to the water wave problem with fixed flow force and more relaxed assumptions.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


Author(s):  
D. H. Peregrine ◽  
Ronald Smith

AbstractThe basic state considered in this paper is a parallel flow of a jet-like character with the centre of the jet being at or near a free surface which is horizontal. Stationary surface gravity waves may exist on such a flow, and a number of examples are looked at for small amplitude waves. Explicit solutions are given for ‘top-hat’ profile jets and for two-dimensional flows. Asymptotic solutions are developed for stationary waves of large wave-number.


2015 ◽  
Vol 779 ◽  
pp. 684-700 ◽  
Author(s):  
Nikolay Kuznetsov

The coupled motion is investigated for a mechanical system consisting of water and a body freely floating in it. Water occupies either a half-space or a layer of constant depth into which an infinitely long surface-piercing cylinder is immersed, thus allowing us to study two-dimensional modes. Under the assumption that the motion is of small amplitude near equilibrium, a linear setting is applicable, and for the time-harmonic oscillations it reduces to a spectral problem with the frequency of oscillations as the spectral parameter. Within this framework, it is shown that the total energy of the water motion is finite and the equipartition of energy holds for the whole system. On this basis two results are obtained. First, the so-called semi-inverse procedure is applied for the construction of a family of two-dimensional bodies trapping the heave mode. Second, it is proved that no wave modes can be trapped provided that their frequencies exceed a bound depending on the cylinder properties, whereas its geometry is subject to some restrictions and, in some cases, certain restrictions are imposed on the type of mode.


2015 ◽  
Vol 768 ◽  
pp. 91-112 ◽  
Author(s):  
Miles H. Wheeler

We consider two-dimensional solitary water waves on a shear flow with an arbitrary distribution of vorticity. Assuming that the horizontal velocity in the fluid never exceeds the wave speed and that the free surface lies everywhere above its asymptotic level, we give a very simple proof that a suitably defined Froude number $F$ must be strictly greater than the critical value $F=1$. We also prove a related upper bound on $F$, and hence on the amplitude, under more restrictive assumptions on the vorticity.


Author(s):  
Walter Craig ◽  
Philippe Guyenne ◽  
David P. Nicholls ◽  
Catherine Sulem

This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results of R. Rosales & G. Papanicolaou (1983 Stud. Appl. Math. 68 , 89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth. The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou (1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations. In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate unidirectional limit. The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations in bottom topography as well as the deformations of the free surface from equilibrium.


We consider a problem in the linearized theory of water waves. A smooth oscillating two-dimensional body meets the free surface at angles other than right-angles. In this paper we prove the existence of a solution for this problem by using integral equations. This problem has been considered by other authors; however, their attempts have resulted in singular integral equations. To show that Fredholm theory applies to these equations involves a great deal of generalized analysis. It is shown that it is possible to obtain a well-behaved integral equation by means of an explicit modification of the source potential used to derive this equation. To illustrate this method a circular cylinder that is more than or less than half immersed and undergoing a heaving motion is considered. This method is in terms of more elementary concepts than those used by previous authors. The explicit proof also indicates how the problem may be solved in practice, and it is hoped to report on the numerical solution later.


1970 ◽  
Vol 40 (3) ◽  
pp. 433-451 ◽  
Author(s):  
D. V. Evans

A thin vertical plate makes small, simple harmonic rolling oscillations beneath the surface of an incompressible, irrotational liquid. The plate is assumed to be so wide that the resulting equations may be regarded as two-dimensional. In addition, a train of plane waves of frequency equal to the frequency of oscillation of the plate, is normally incident on the plate. The resulting linearized boundary-value problem is solved in closed form for the velocity potential everywhere in the fluid and on the plate. Expressions are derived for the first- and second-order forces and moments on the plate, and for the wave amplitudes at a large distance either side of the plate. Numerical results are obtained for the case of the plate held fixed in an incident wave-train. It is shown how these results, in the special case when the plate intersects the free surface, agree, with one exception, with results obtained by Ursell (1947) and Haskind (1959) for this problem.


Sign in / Sign up

Export Citation Format

Share Document