scholarly journals Four–dimensional metrics conformal to Kähler

2010 ◽  
Vol 148 (3) ◽  
pp. 485-503 ◽  
Author(s):  
MACIEJ DUNAJSKI ◽  
PAUL TOD

AbstractWe derive some necessary conditions on a Riemannian metric (M, g) in four dimensions for it to be locally conformal to Kähler. If the conformal curvature is non anti–self–dual, the self–dual Weyl spinor must be of algebraic type D and satisfy a simple first order conformally invariant condition which is necessary and sufficient for the existence of a Kähler metric in the conformal class. In the anti–self–dual case we establish a one to one correspondence between Kähler metrics in the conformal class and non–zero parallel sections of a certain connection on a natural rank ten vector bundle over M. We use this characterisation to provide examples of ASD metrics which are not conformal to Kähler.We establish a link between the ‘conformal to Kähler condition’ in dimension four and the metrisability of projective structures in dimension two. A projective structure on a surface U is metrisable if and only if the induced (2, 2) conformal structure on M = TU admits a Kähler metric or a para–Kähler metric.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the impacts of matter field Kähler metric on physical Yukawa couplings in string compactifications. Since the Kähler metric is non-trivial in general, the kinetic mixing of matter fields opens a new avenue for realizing a hierarchical structure of physical Yukawa couplings, even when holomorphic Yukawa couplings have the trivial structure. The hierarchical Yukawa couplings are demonstrated by couplings of pure untwisted modes on toroidal orbifolds and their resolutions in the context of heterotic string theory with standard embedding. Also, we study the hierarchical couplings among untwisted and twisted modes on resolved orbifolds.


Author(s):  
Yoshinobu Kamishima

AbstractWe study some types of qc-Einstein manifolds with zero qc-scalar curvature introduced by S. Ivanov and D. Vassilev. Secondly, we shall construct a family of quaternionic Hermitian metrics $$(g_a,\{J_\alpha \}_{\alpha =1}^3)$$ ( g a , { J α } α = 1 3 ) on the domain Y of the standard quaternion space $${\mathbb {H}}^n$$ H n one of which, say $$(g_a,J_1)$$ ( g a , J 1 ) is a Bochner flat Kähler metric. To do so, we deform conformally the standard quaternionic contact structure on the domain X of the quaternionic Heisenberg Lie group$${{\mathcal {M}}}$$ M to obtain quaternionic Hermitian metrics on the quotient Y of X by $${\mathbb {R}}^3$$ R 3 .


1995 ◽  
Vol 10 (30) ◽  
pp. 4325-4357 ◽  
Author(s):  
A. JOHANSEN

It is shown that D=4N=1 SUSY Yang-Mills theory with an appropriate supermultiplet of matter can be twisted on a compact Kähler manifold. The conditions for cancellation of anomalies of BRST charge are found. The twisted theory has an appropriate BRST charge. We find a nontrivial set of physical operators defined as classes of the cohomology of this BRST operator. We prove that the physical correlators are independent of the external Kähler metric up to a power of a ratio of two Ray-Singer torsions for the Dolbeault cohomology complex on a Kähler manifold. The correlators of local physical operators turn out to be independent of antiholomorphic coordinates defined with a complex structure on the Kähler manifold. However, a dependence of the correlators on holomorphic coordinates can still remain. For a hyper-Kähler metric the physical correlators turn out to be independent of all coordinates of insertions of local physical operators.


1996 ◽  
Vol 05 (03) ◽  
pp. 217-225 ◽  
Author(s):  
FREDRIK ANDERSSON ◽  
S. BRIAN EDGAR

By reconciling the wave equation for the Weyl tensor with the corresponding wave equation for the Weyl spinor, we establish a new tensor identity—involving the sum of terms each consisting of a product of the Weyl and Ricci tensors—valid in four (and only four) dimensions. This enables us to give, for the first time, the correct and simplest form of the wave equation for the Weyl tensor in four-dimensional nonvacuum spacetimes. The wave equation for the Weyl tensor in n(> 4) dimensional nonvacuum spaces is also presented for the first time; we show that there does not exist an analogous n-dimensional tensor identity matching the four-dimensional one, and so it follows that there does not exist an analogous simplification of the Weyl wave equation in the n-dimensional case. It is also shown how our new identity, and some other recently discovered identities, relate to a large class of dimensionally dependent identities found some time ago by Lovelock.


1989 ◽  
Vol 116 ◽  
pp. 63-88 ◽  
Author(s):  
Björn Gustafsson ◽  
Jaak Peetre

Consider a Riemann surface X equipped with a projective structure, that is, a covering of X with coordinate neighborhoods U and corresponding (holomorphic) local coordinates {t} such that in the intersection U ∩ U′ of any two such coordinate neighborhoods U and U′ change of local coordinates is mediated by a fractional linear transformation


Sign in / Sign up

Export Citation Format

Share Document