Peasants and Revolution in Rural China: Rural Political Change in the North China Plain and the Yangzi Delta, 1850–1949. Chang Liu. London and New York: Routledge, 2007. xiv + 258 pp. £80.00. ISBN 978-0-415-42176-8

2008 ◽  
Vol 194 ◽  
pp. 456-457
Author(s):  
Lucien Bianco
2018 ◽  
Author(s):  
Zhaofeng Tan ◽  
Franz Rohrer ◽  
Keding Lu ◽  
Xuefei Ma ◽  
Birger Bohn ◽  
...  

Abstract. The first wintertime in-situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx = OH + HO2 + RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign “Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions” (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4 × 106 cm−3 in severely polluted air (kOH ~ 27 s−1) to 3.6 × 106 cm−3 in relatively clean air (kOH ~ 5 s−1). These values are nearly two-fold larger than OH concentrations observed in previous winter campaign in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46 % of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28 %) and photolysis of oxygenated organic compounds (24 %). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 and RO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.


2018 ◽  
Vol 18 (16) ◽  
pp. 12391-12411 ◽  
Author(s):  
Zhaofeng Tan ◽  
Franz Rohrer ◽  
Keding Lu ◽  
Xuefei Ma ◽  
Birger Bohn ◽  
...  

Abstract. The first wintertime in situ measurements of hydroxyl (OH), hydroperoxy (HO2) and organic peroxy (RO2) radicals (ROx=OH+HO2+RO2) in combination with observations of total reactivity of OH radicals, kOH in Beijing are presented. The field campaign “Beijing winter finE particle STudy – Oxidation, Nucleation and light Extinctions” (BEST-ONE) was conducted at the suburban site Huairou near Beijing from January to March 2016. It aimed to understand oxidative capacity during wintertime and to elucidate the secondary pollutants' formation mechanism in the North China Plain (NCP). OH radical concentrations at noontime ranged from 2.4×106cm-3 in severely polluted air (kOH∼27s-1) to 3.6×106cm-3 in relatively clean air (kOH∼5s-1). These values are nearly 2-fold larger than OH concentrations observed in previous winter campaigns in Birmingham, Tokyo, and New York City. During this campaign, the total primary production rate of ROx radicals was dominated by the photolysis of nitrous acid accounting for 46 % of the identified primary production pathways for ROx radicals. Other important radical sources were alkene ozonolysis (28 %) and photolysis of oxygenated organic compounds (24 %). A box model was used to simulate the OH, HO2 and RO2 concentrations based on the observations of their long-lived precursors. The model was capable of reproducing the observed diurnal variation of the OH and peroxy radicals during clean days with a factor of 1.5. However, it largely underestimated HO2 and RO2 concentrations by factors up to 5 during pollution episodes. The HO2 and RO2 observed-to-modeled ratios increased with increasing NO concentrations, indicating a deficit in our understanding of the gas-phase chemistry in the high NOx regime. The OH concentrations observed in the presence of large OH reactivities indicate that atmospheric trace gas oxidation by photochemical processes can be highly effective even during wintertime, thereby facilitating the vigorous formation of secondary pollutants.


Author(s):  
Min Xue ◽  
Jianzhong Ma ◽  
Guiqian Tang ◽  
Shengrui Tong ◽  
Bo Hu ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Gangqiang Zhang ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Weiwei Lei

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.


2021 ◽  
Vol 20 (6) ◽  
pp. 1687-1700
Author(s):  
Li-chao ZHAI ◽  
Li-hua LÜ ◽  
Zhi-qiang DONG ◽  
Li-hua ZHANG ◽  
Jing-ting ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document