Global structure of solutions for equations of Brezis–Nirenberg type on the unit ball

Author(s):  
Yoshitsugu Kabeya ◽  
Eiji Yanagida ◽  
Shoji Yotsutani

The Brezis–Nirenberg equation and the scalar field equation on the three-dimensional unit ball are studied. Under the Robin condition, we show the existence and uniqueness of radial solutions in a unified way. In particular, it is shown that the global structure of solutions changes qualitatively when a parameter in the boundary condition exceeds a certain critical value.

Author(s):  
Yoshitsugu Kabeya ◽  
Eiji Yanagida ◽  
Shoji Yotsutani

The Brezis-Nirenberg equation and the scalar field equation on the three-dimensional unit ball are studied. Under the Robin condition, we show the existence and uniqueness of radial solutions in a unified way. In particular, it is shown that the global structure of solutions changes qualitatively when a parameter in the boundary condition exceeds a certain critical value.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zongming Guo ◽  
Fangshu Wan

<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>


1999 ◽  
Vol 01 (01) ◽  
pp. 71-86
Author(s):  
KRYSTYNA KUPERBERG

There is a finite set of points on the boundary of the three-dimensional unit ball whose minimal tree is knotted. This example answers a problem posed by Michael Freedman.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Maria Alessandra Ragusa ◽  
Abdolrahman Razani ◽  
Farzaneh Safari

AbstractIn this paper, using variational methods, we prove the existence of at least one positive radial solution for the generalized $p(x)$ p ( x ) -Laplacian problem $$ -\Delta _{p(x)} u + R(x) u^{p(x)-2}u=a (x) \vert u \vert ^{q(x)-2} u- b(x) \vert u \vert ^{r(x)-2} u $$ − Δ p ( x ) u + R ( x ) u p ( x ) − 2 u = a ( x ) | u | q ( x ) − 2 u − b ( x ) | u | r ( x ) − 2 u with Dirichlet boundary condition in the unit ball in $\mathbb{R}^{N}$ R N (for $N \geq 3$ N ≥ 3 ), where a, b, R are radial functions.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Hakan Ertu¨rk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

The boundary condition design of a three-dimensional furnace that heats an object moving along a conveyor belt of an assembly line is considered. A furnace of this type can be used by the manufacturing industry for applications such as industrial baking, curing of paint, annealing or manufacturing through chemical deposition. The object that is to be heated moves along the furnace as it is heated following a specified temperature history. The spatial temperature distribution on the object is kept isothermal through the whole process. The temperature distribution of the heaters of the furnace should be changed as the object moves so that the specified temperature history can be satisfied. The design problem is transient where a series of inverse problems are solved. The process furnace considered is in the shape of a rectangular tunnel where the heaters are located on the top and the design object moves along the bottom. The inverse design approach is used for the solution, which is advantageous over a traditional trial-and-error solution where an iterative solution is required for every position as the object moves. The inverse formulation of the design problem is ill-posed and involves a set of Fredholm equations of the first kind. The use of advanced solvers that are able to regularize the resulting system is essential. These include the conjugate gradient method, the truncated singular value decomposition or Tikhonov regularization, rather than an ordinary solver, like Gauss-Seidel or Gauss elimination.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Connor Behan ◽  
Lorenzo Di Pietro ◽  
Edoardo Lauria ◽  
Balt C. van Rees

Abstract We study conformal boundary conditions for the theory of a single real scalar to investigate whether the known Dirichlet and Neumann conditions are the only possibilities. For this free bulk theory there are strong restrictions on the possible boundary dynamics. In particular, we find that the bulk-to-boundary operator expansion of the bulk field involves at most a ‘shadow pair’ of boundary fields, irrespective of the conformal boundary condition. We numerically analyze the four-point crossing equations for this shadow pair in the case of a three-dimensional boundary (so a four-dimensional scalar field) and find that large ranges of parameter space are excluded. However a ‘kink’ in the numerical bounds obeys all our consistency checks and might be an indication of a new conformal boundary condition.


2020 ◽  
Vol 18 (1) ◽  
pp. 1302-1316
Author(s):  
Guobing Fan ◽  
Zhifeng Yang

Abstract In this paper, we investigate the problem for optimal control of a viscous generalized \theta -type dispersive equation (VG \theta -type DE) with weak dissipation. First, we prove the existence and uniqueness of weak solution to the equation. Then, we present the optimal control of a VG \theta -type DE with weak dissipation under boundary condition and prove the existence of optimal solution to the problem.


Sign in / Sign up

Export Citation Format

Share Document