The effect of dietary fat on methane production in sheep and cattle

1996 ◽  
Vol 1996 ◽  
pp. 182-182
Author(s):  
C. J. Newbold ◽  
A. R. Moss ◽  
G. S. Mollinson

Increasing concern over the role of greenhouse gases in global warming has led to a renewed interest in models for predicting methane production in ruminants. We have previously shown that data generated in sheep may be of limited use in predicting the effect of diet on absolute methane production by cattle (Newbold et al., 1995). However, sheep may still be a viable model for evaluating methods of reducing methane production by cattle. As dietary lipids may inhibit ruminal methanogenesis (Moss, 1993), we have now compared the effect of coconut and linseed oil on methane production by both sheep and cattle.

Author(s):  
C.J. Newbold ◽  
A.R. Moss ◽  
G.S. Mollinson

Increasing concern over the role of greenhouse gases in global warming has lead to a renewed interest in the production of methane by ruminants. Sheep are routinely used to study digestibility, however their use as a model to study methane production by cattle has received only limited attention (Blaxter and Wainman, 1964). The objective of the current study was to establish whether differences in methane production exist between sheep and cattle and to measure the magnitude of these differences under various dietary situations.


1995 ◽  
Vol 1995 ◽  
pp. 82-82
Author(s):  
C. J. Newbold ◽  
A.R. Moss ◽  
G.S. Mollinson ◽  
C.G Harbron

Increasing concern over the role of greenhouse gases in global warming has led to a renewed interest in models for predicting methane production in ruminants. For economic reasons it would be preferable if such models could be derived from data obtained in smaller ruminants. The objective of this project is to establish whether differences in methane production exist between sheep and cattle and to measure the magnitude of these differences under various dietary situations.


2021 ◽  
pp. 1-13
Author(s):  
Kehan Li

Climate change is of great importance in modern times and global warming is considered as a significant part of climate change. It is proved that human’s emissions such as greenhouse gases are one of the main sources of global warming (IPCC, 2018). Apart from greenhouse gases, there is another kind of matter being released in quantity via emissions from industries and transportations and playing an important role in global warming, which is aerosol. However, atmospheric aerosols have the net effect of cooling towards global warming. In this paper, climate change with respect to global warming is briefly introduced and the role of aerosols in the atmosphere is emphasized. Besides, properties of aerosols including dynamics and thermodynamics of aerosols as well as interactions with solar radiation are concluded. In the end, environmental policies and solutions are discussed. Keywords: Climate change, Global warming, Atmospheric aerosols, Particulate matter, Radiation, Environmental policy.


Author(s):  
Han Dolman

The chapter describes the mechanisms by which methane is produced in anaerobic environments. Various methane sources and sinks, both natural (e.g. wetlands) and anthropogenic (e.g. landfills, agriculture, fires), are described. The decomposition of organic material in the soil is described as a continuum within the soil matrix, rather than a separation into labile and stable pools. The different pathways of methane production under anaerobic conditions—the acetate pathway and the hydrogen pathway—are described. The roles of wetlands, water bodies, permafrost and clathrate in storing and emitting methane are elucidated. At the geological scale, the chapter discusses the role of methane as a greenhouse gas in providing a habitable climate under a fainter sun (the faint sun paradox), in glacial–interglacial transitions and in the current anthropogenic perturbation. Future methane emissions, global warming potential and the sensitivity of the important methane stores to climate change are also discussed.


1975 ◽  
Vol 33 (2) ◽  
pp. 291-297 ◽  
Author(s):  
P. W. Larking ◽  
E. R. Nye

1. Rats were fed for 8 weeks on one of five diets differing in the amount of fatty acids 18:1, 18:2 and 18:3. Lipolysis, in vitro, of epididymal fat from fed and fasted rats was measured both basally and in the presence of noradrenaline with and without prostaglandin E12. Lipolysis was markedly influenced by the type of dietary fat. In particular, lipolysis in adipose tissue from rats given diets rich in the fatty acid 18:3 was higher than in the rats given diets containing 18:23. Results showing the effects of fasting on adipose tissue lipolysis are also presented4. The results are discussed in relation to the known effects of unsaturated fats on hyper-plasia and protein synthesis in adipose tissue and on the possible role of prostaglandins.


2021 ◽  
pp. 1-13
Author(s):  
Kehan Li

Climate change is of great importance in modern times and global warming is considered as a significant part of climate change. It is proved that human’s emissions such as greenhouse gases are one of the main sources of global warming (IPCC, 2018). Apart from greenhouse gases, there is another kind of matter being released in quantity via emissions from industries and transportations and playing an important role in global warming, which is aerosol. However, atmospheric aerosols have the net effect of cooling towards global warming. In this paper, climate change with respect to global warming is briefly introduced and the role of aerosols in the atmosphere is emphasized. Besides, properties of aerosols including dynamics and thermodynamics of aerosols as well as interactions with solar radiation are concluded. In the end, environmental policies and solutions are discussed. Keywords: Climate change, Global warming, Atmospheric aerosols, Particulate matter, Radiation, Environmental policy.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


1962 ◽  
Vol 77 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Donald J. Naismith

Sign in / Sign up

Export Citation Format

Share Document