An Approximate Solution of the Laminar Boundary Layer on a Flat Plate with Uniform Suction

1955 ◽  
Vol 59 (538) ◽  
pp. 697-698
Author(s):  
S. J. Peerless ◽  
D. B. Spalding

Boundary layer problems may be divided into two classes: (a) those for which similar solutions can be found, i.e. where the boundary conditions are such that similar profiles differing only in scale factor exist at different sections; and (b) those where the boundary conditions do not effect similarity, so that the development of the boundary layer must be calculated in stages. The latter class are known as “continuation problems,” and very few numerical solutions have been obtained because of the labour involved.Approximate methods of solving continuation problems are known, using the Karman momentum integral method (e.g. Ref. 1) or variants. Some of these methods make use of velocity profiles calculated for “similar” boundary layers. This note presents a new approximate method which uses “similar” profiles but avoids using the momentum integral. Instead of characterising the boundary layer thickness by the “momentum thickness,” which needs to be calculated yet is of less direct interest, the wall shear stress is used; this stress usually has to be calculated in any case and the present method is therefore comparatively simple.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Bikash Sahoo ◽  
Sébastien Poncet ◽  
Fotini Labropulu

The similarity equations for the Bödewadt flow of a non-Newtonian Reiner-Rivlin fluid, subject to uniform suction/injection, are solved numerically. The conventional no-slip boundary conditions are replaced by corresponding partial slip boundary conditions, owing to the roughness of the infinite stationary disk. The combined effects of surface slip (λ), suction/injection velocity (W), and cross-viscous parameter (L) on the momentum boundary layer are studied in detail. It is interesting to find that suction dominates the oscillations in the velocity profiles and decreases the boundary layer thickness significantly. On the other hand, injection has opposite effects on the velocity profiles and the boundary layer thickness.


1978 ◽  
Vol 45 (2) ◽  
pp. 450-453
Author(s):  
M. Sokolov ◽  
G. Karpati

The momentum integral equation is used to study the transient behavior of a Blasius-type boundary layer which is suddenly subjected to uniform blowing or suction. The time required for the boundary layer to adjust itself from one steady state (Blasius) to the other (constant blowing or suction) was found to be proportional to the distance from the leading edge. Boundary-layer thickness of intermediate states and skin friction coefficients are also reported.


1979 ◽  
Vol 46 (1) ◽  
pp. 9-14 ◽  
Author(s):  
G. M. Harpole ◽  
S. A. Berger ◽  
J. Aroesty

The integral method of Thwaites, for computing the primary parameters of laminar boundary layers with constant fluid properties, is extended to heated boundary layers in water, taking into account variable fluid properties. Universal parameters are correlated from numerical solutions of heated water wedge flows for use with the integral method. The method shows good accuracy in a test with the Howarth retarded flow. The Lighthill high Prandtl number approximation is extended to permit computation of the Nusselt number for boundary layers with variable fluid properties. Nusselt numbers computed for the Howarth flow are close to the exact numerical solutions, except near separation.


2014 ◽  
Vol 353 ◽  
pp. 306-310
Author(s):  
João M.P.Q. Delgado ◽  
M. Vázquez da Silva

The transport phenomenon of mass transfers between a moving fluid and a reacting sphere buried in a packed bed, with “uniform velocity”, was analysed numerically, for solute transport by both advection and diffusion to obtain the concentration field and, from it, the dimensionless concentration boundary layer thickness, , for , and . The bed of inert particles is taken to have uniform voidage. For this purpose, numerical solutions of the partial differential equations describing mass concentration of the solute were undertaken to obtain the concentration boundary layer thickness as a function of the relevant parameters. Finally, mathematical expressions that relate the dependence with the Peclet number and inert particle diameter are proposed to describe the approximate size of the concentration boundary layer thickness.


10.14311/368 ◽  
2002 ◽  
Vol 42 (4) ◽  
Author(s):  
P. Koníček ◽  
M. Bednařík ◽  
M. Červenka

This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.


1986 ◽  
Author(s):  
H. Pfeil ◽  
M. Göing

The paper presents an integral method to predict turbulent boundary layer behaviour in two-dimensional, incompressible flow. The method is based on the momentum and moment-of-momentum integral equations and a friction law. By means of the compiled data of the 1968-Stanford-Conference, the results show that the integral of the turbulent shear-stress across the boundary layer, which appears in the moment-of-momentum integral equation, can be described by only two basic assumptions for all cases of flow.


1997 ◽  
Vol 12 (4) ◽  
pp. 1112-1121 ◽  
Author(s):  
David S. Dandy ◽  
Jungheum Yun

Explicit expressions have been derived for momentum and thermal boundary-layer thickness of the laminar, uniform stagnation flows characteristic of highly convective chemical vapor deposition pedestal reactors. Expressions for the velocity and temperature profiles within the boundary layers have also been obtained. The results indicate that, to leading order, the momentum boundary-layer thickness is inversely proportional to the square root of the Reynolds number, while the thermal boundary-layer thickness is inversely proportional to the square root of the Peclet number. Values computed using the approximate expressions are compared directly with numerical solutions of the equations of motion and thermal energy equation, for a specific set of conditions typical of diamond chemical vapor deposition. Because values of the Lewis number do not vary significantly from unity for many different chemical vapor deposition systems, the expression derived here for thermal boundary-layer thickness may be used directly as an approximate concentration boundary-layer thickness.


1997 ◽  
Vol 07 (07) ◽  
pp. 1005-1022 ◽  
Author(s):  
Christo I. Christov ◽  
Tchavdar T. Marinov

The inverse problem of identification of boundary-layer thickness is replaced by the higher-order boundary value problem for the Euler–Lagrange equations for minimization of the quadratic functional of the original system (Method of Variational Imbedding – MVI). The imbedding problem is correct in the sense of Hadamard and consists of an explicit differential equation for the boundary-layer thickness. The existence and uniqueness of solution of the linearized imbedding problem is demonstrated and a difference scheme of splitting type is proposed for its numerical solution. The performance of the technique is demonstrated for three different boundary-layer problems: the Blasius problem, flow in the vicinity of plane stagnation point and the flow in the leading stagnation point on a circular cylinder. Comparisons with the self-similar solutions where available are quantitatively very good.


1976 ◽  
Vol 98 (3) ◽  
pp. 531-537 ◽  
Author(s):  
A. Nakayama ◽  
V. C. Patel ◽  
L. Landweber

An iterative procedure for the calculation of the thick attached turbulent boundary layer near the tail of a body of revolution is presented. The procedure consists of the potential-flow calculation by a method of integral equation of the first kind and the calculation of the development of the boundary layer and the wake using an integral method with the condition that the velocity remains continuous across the edge of the boundary layer and the wake. The additional terms that appear in the momentum integral equation for the thick boundary layer and the near wake are taken into account and the pressure difference between the body surface and the edge of the boundary layer and the wake can be determined. The results obtained by the present method are in good agreement with the experimental data. Part 1 of this paper deals with the potential flow, while Part 2 [1] describes the boundary layer and wake calculations, and the overall iterative procedure and results.


Sign in / Sign up

Export Citation Format

Share Document