The Compact Network RTK Method: An Effective Solution to Reduce GNSS Temporal and Spatial Decorrelation Error

2010 ◽  
Vol 63 (2) ◽  
pp. 343-362 ◽  
Author(s):  
Byungwoon Park ◽  
Changdon Kee

This paper proposes a method that combines compact real-time kinematic (RTK) and reference station (RS) networking techniques, and shows that this approach can reduce both the temporal and spatial decorrelation error. The compact RTK method compatibility with all the conventional network RTK systems, i.e., Master-Auxiliary Concept (MAC), Virtual Reference Stations (VRS), and Flächen-Korrektur Parameter (FKP), is examined theoretically in this paper. To prove that the compact RTK approach is not only valid, but also helpful to the network RTK system, a field test was held using one hour of Receiver Independent Exchange Format (RINEX) data logged every second from Continuously Operating Reference Stations (CORS). No matter which network RTK method is applied, the Compact Network RTK approach resolves the ambiguity of the carrier phase in 10–40 s and determines position with 6–7 cm horizontal and 7–8 cm vertical error (95%) in a 100 by 100 km region. Moreover, the Compact Network RTK approach enables network RTK service providers to reduce the data-link bandwidth for correction messages to 5–700 bps (bit/s) down from several thousand bps, currently 9600 bps of GPRS/GSM, without a severe degradation of accuracy.

2011 ◽  
Vol 90-93 ◽  
pp. 2828-2831
Author(s):  
Cheng Fa Gao ◽  
Xue Feng Shen

In view of the deficiency of algorithm for VRS (Virtual Reference Station) based on the triangular network, a novel algorithm for VRS which is based on star network is proposed. Firstly, a kind of baseline solution method of network RTK/VRS based on star structure is established and an ambiguity resolution method is also proposed in this paper. Then further research is done to analyze the algorithm of ionospheric and tropospheric correction separately. Finally, the network ambiguity resolution and correction calculation in both star structure network and traditional triangular network are verified and analyzed through two tests. These tests indicate that the Network RTK (VRS) based on star structure this paper proposed can obviously accelerate the fixed time of network ambiguity resolution, which can be up to 50%, and can achieve higher precision and reliability in the generation of network correction.


2016 ◽  
Vol 65 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Radzym Ławniczak ◽  
Jarosław Kubiak

Abstract The objective of research concerned verifying the accuracy of the location and shape of selected lakes presented on topographical maps from various periods, drawn up on different scales. The area of research covered lakes situated in North-Western Poland on the Międzychód-Sieraków Lakeland. An analysis was performed of vector maps available in both analogue and digital format. The scales of these studies range from 1:50 000 to 1:10 000. The source materials were current for the years 1907 through 2013. The shape and location of lakes have been verified directly by means of field measurements performed using the GPS technology with an accuracy class of RTK. An analysis was performed of the location and shape of five lakes. The analysed water regions were vectorised, and their vector images were used to determine quantitative features: the area and length of the shoreline. Information concerning the analysed lakes obtained from the maps was verified on the basis of direct field measurements performed using a GPS RTK receiver. Use was made of georeferential corrections provided by the NAVGEO service or a virtual reference station generated by the ASG EUPOS system. A compilation of cartographic and field data formed the basis for a comparison of the actual area and the length of the shoreline of the studied lakes. Cartographic analyses made it possible to single out the most reliable cartographic sources, which could be used for the purposes of hydrographical analyses. The course of shorelines shows the attached map.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2482
Author(s):  
Katarzyna Chruzik ◽  
Marzena Graboń-Chałupczak

Safety monitoring provides the detection of changes in systems or operations that may suggest any case of approaching a point close to exceeding the acceptable safety standards and indicates whether corrective/prevention actions have been taken. Safety information should be maintained within the scope of transport undertakings to ensure safety and be communicated to all responsible staff, depending on each person’s function in the processes. Regulatory authorities should continuously monitor the implementation of safety management processes and the processes performed by road transport service providers. Safety management, therefore, requires investment in development and modernisation to meet market needs resulting from the mobility of residents, the growth of transport, and the obligations of countries resulting from the transport and environmental policy pursued by the European Union. Along with changes in the transport system, a need to assess their significance for the transport system’s safety arises. Depending on the transport mode (rail, air, water, road), the scope of standardised requirements is quite different each time. The paper analyses the legal requirements and acceptable practices for assessing the significance of the change in all transport modes and develops a standard method for assessing the significance of the change that meets all the requirements of electromobility safety management systems.


2015 ◽  
Vol 41 (4) ◽  
pp. 145-155
Author(s):  
Timo Saari ◽  
Markku Poutanen ◽  
Veikko Saaranen ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

Precise levelling is known for its accuracy and reliability in height determination, but the process itself is slow, laborious and expensive. We have started a project to study methods for height determination that could decrease the creation time of national height systems without losing the accuracy and reliability that is needed for them. In the pilot project described here, we study some of the alternative techniques with a pilot field test where we compared them with the precise levelling. The purpose of the test is not to evaluate the mutual superiority or suitability of the techniques, but to establish the background for a larger test and to find strong and weak points of each technique. The techniques chosen for this study were precise levelling, Mobile Laser Scanning (MLS) and Global Navigation Satellite System (GNSS) levelling, which included static Global Positioning System (GPS) and Virtual Reference Station (VRS) measurements. This research highlighted the differences of the studied techniques and gave insights about the framework and procedure for the later experiments. The research will continue in a larger scale, where the suitability of the techniques regarding the height systems is to be determined.


2012 ◽  
Vol 18 (2) ◽  
pp. 171-184 ◽  
Author(s):  
Kutalmis Gumus ◽  
Cahit Tagi Celik ◽  
Halil Erkaya

In this study, for Istanbul, there are two Cors Networks (Cors-TR, Iski Cors) providing Virtual Reference Station (VRS), and Flachen Korrektur Parameter (FKP), corrections to rover receiver for determining 3-D positions in real time by Global Positioning System (GPS). To determine which method (or technique) provides accurate method for position fixing, a test network consisting of 49 stations was set up in Yildiz Technical University Davudpasa Campus. The coordinates of the stations in the test network were determined by conventional geodetic, classical RTK, VRS and FKP methods serviced by both Cors-TR and Iski Cors. The results were compared to the coordinates by the conventional method by using total station. The results showed a complex structure as the accuracy differs from one component to another such as in horizontal coordinates, Y components by CorsTR_VRS and Cors_TR_ FKP showed 'best' results while the same technique provided X components consistent accuracy with the Y component but less accurate than by real time kinematic (RTK). In vertical components, of all the techniques used for the h components, CorsTR_VRS showed 'best' accuracy with three outliers.


Sign in / Sign up

Export Citation Format

Share Document