The Expanding Sahara

1974 ◽  
Vol 1 (1) ◽  
pp. 5-13 ◽  
Author(s):  
J. L. Cloudsley-Thompson

The belts of savanna lying to the south of the Sahara are described. Evidence is then presented which suggests that these have been created from forest by shifting cultivation and the use of fire: they have probably developed contemporaneously with the evolution of Man and increase in human population. The effect of climatic changes in creating desert are discussed, and the conclusion is reached that present conditions in much of the Sahara have been engendered almost entirely by human activities. These include felling of trees for firewood and charcoal, or to make their leaves accessible to stock in times of drought and, even more important, overgrazing—especially by goats. Finally, it is suggested that, in the long term, agriculture may not be the most promising way of developing arid regions. Overstocking the savanna and desert must inevitably lead to disaster.

2000 ◽  
Vol 179 ◽  
pp. 201-204
Author(s):  
Vojtech Rušin ◽  
Milan Minarovjech ◽  
Milan Rybanský

AbstractLong-term cyclic variations in the distribution of prominences and intensities of green (530.3 nm) and red (637.4 nm) coronal emission lines over solar cycles 18–23 are presented. Polar prominence branches will reach the poles at different epochs in cycle 23: the north branch at the beginning in 2002 and the south branch a year later (2003), respectively. The local maxima of intensities in the green line show both poleward- and equatorward-migrating branches. The poleward branches will reach the poles around cycle maxima like prominences, while the equatorward branches show a duration of 18 years and will end in cycle minima (2007). The red corona shows mostly equatorward branches. The possibility that these branches begin to develop at high latitudes in the preceding cycles cannot be excluded.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tainã M. L. Pinho ◽  
Cristiano M. Chiessi ◽  
Rodrigo C. Portilho-Ramos ◽  
Marília C. Campos ◽  
Stefano Crivellari ◽  
...  

AbstractSubtropical ocean gyres play a key role in modulating the global climate system redistributing energy between low and high latitudes. A poleward displacement of the subtropical gyres has been observed over the last decades, but the lack of long-term monitoring data hinders an in-depth understanding of their dynamics. Paleoceanographic records offer the opportunity to identify meridional changes in the subtropical gyres and investigate their consequences to the climate system. Here we use the abundance of planktonic foraminiferal species Globorotalia truncatulinodes from a sediment core collected at the northernmost boundary of the South Atlantic Subtropical Gyre (SASG) together with a previously published record of the same species from the southernmost boundary of the SASG to reconstruct meridional fluctuations of the SASG over last ca. 70 kyr. Our findings indicate southward displacements of the SASG during Heinrich Stadials (HS) 6-4 and HS1, and a contraction of the SASG during HS3 and HS2. During HS6-4 and HS1, the SASG southward displacements likely boosted the transfer of heat to the Southern Ocean, ultimately strengthening deep-water upwelling and CO2 release to the atmosphere. We hypothesize that the ongoing SASG poleward displacement may further increase oceanic CO2 release.


2012 ◽  
Vol 64 (6) ◽  
pp. 1129-1135 ◽  
Author(s):  
Pi-Jen Liu ◽  
Pei-Jie Meng ◽  
Li-Lian Liu ◽  
Jih-Terng Wang ◽  
Ming-Yih Leu

The Holocene ◽  
2021 ◽  
pp. 095968362110331
Author(s):  
Matthew Adesanya Adeleye ◽  
Simon Edward Connor ◽  
Simon Graeme Haberle

Understanding long-term (centennial–millennial scale) ecosystem stability and dynamics are key to sustainable management and conservation of ecosystem processes under the currently changing climate. Fossil pollen records offer the possibility to investigate long-term changes in vegetation composition and diversity on regional and continental scales. Such studies have been conducted in temperate systems, but are underrepresented in the tropics, especially in Africa. This study attempts to synthesize pollen records from Nigeria (tropical western Africa) and nearby regions to quantitatively assess Holocene regional vegetation changes (turnover) and stability under different climatic regimes for the first time. We use the squared chord distance metric (SCD) to assess centennial-scale vegetation turnover in pollen records. Results suggest vegetation in most parts of Nigeria experienced low turnover under a wetter climatic regime (African Humid Period), especially between ~8000 and 5000 cal year BP. In contrast, vegetation turnover increased significantly under the drier climatic regime of the late-Holocene (between ~5000 cal year BP and present), reflecting the imp role of moisture changes in tropical west African vegetation dynamics during the Holocene. Our results are consistent with records of vegetation and climatic changes in other parts of Africa, suggesting the Holocene pattern of vegetation change in Nigeria is a reflection of continental-scale climatic changes.


Significance The initial focus was on professionals employed in the south-western border governorates; however, there are growing reports of an impact across the country, also including unskilled workers. This comes as the Saudi-led coalition continues its intervention in the Yemen conflict that began in 2015. The Riyadh-based government-in-exile has protested. Impacts Anti-Saudi sentiments will strengthen among Yemenis of all political affiliations. Mutual trust between Riyadh and the internationally recognised government of Yemeni President Abd Rabbu Mansur al-Hadi will decline further. In south-western Saudi Arabia, fear and anger between people of Yemeni origin and nationals will rise, undercutting long-term cultural ties.


Sign in / Sign up

Export Citation Format

Share Document