Forest cover change patterns in Myanmar (Burma) 1990–2000

2005 ◽  
Vol 32 (4) ◽  
pp. 356-364 ◽  
Author(s):  
PETER LEIMGRUBER ◽  
DANIEL S. KELLY ◽  
MARC K. STEININGER ◽  
JAKE BRUNNER ◽  
THOMAS MÜLLER ◽  
...  

Myanmar is one of the most forested countries in mainland South-east Asia. These forests support a large number of important species and endemics and have great value for global efforts in biodiversity conservation. Landsat satellite imagery from the 1990s and 2000s was used to develop a countrywide forest map and estimate deforestation. The country has retained much of its forest cover, but forests have declined by 0.3% annually. Deforestation varied considerably among administrative units, with central and more populated states and divisions showing the highest losses. Ten deforestation hotspots had annual deforestation rates well above the countrywide average. Major reasons for forest losses in these hotspots stemmed from increased agricultural conversion, fuelwood consumption, charcoal production, commercial logging and plantation development. While Myanmar continues to be a stronghold for closed canopy forests, several areas have been experiencing serious deforestation. Most notable are the mangrove forests in the Ayeyarwady delta region and the remaining dry forests at the northern edge of the central dry zone.

Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 113 ◽  
Author(s):  
Vasco Chiteculo ◽  
Bohdan Lojka ◽  
Peter Surový ◽  
Vladimir Verner ◽  
Dimitrios Panagiotidis ◽  
...  

Forest degradation and forest loss threaten the survival of many species and reduce the ability of forests to provide vital services. Clearing for agriculture in Angola is an important driver of forest degradation and deforestation. Charcoal production for urban consumption as a driver of forest degradation has had alarming impacts on natural forests, as well as on the social and economic livelihood of the rural population. The charcoal impact on forest cover change is in the same order of magnitude as deforestation caused by agricultural expansion. However, there is a need to monitor the linkage between charcoal production and forest degradation. The aim of this paper is to investigate the sequence of the charcoal value chain as a systematic key to identify policies to reduce forest degradation in the province of Bié. It is a detailed study of the charcoal value chain that does not stop on the production and the consumption side. The primary data of this study came from 330 respondents obtained through different methods (semi-structured questionnaire survey and market observation conducted in June to September 2013–2014). A logistic regression (logit) model in IBM SPSS Statistics 24 (IBM Corp, Armonk, NY, USA) was used to analyze the factors influencing the decision of the households to use charcoal for domestic purposes. The finding indicates that 21 to 27 thousand hectares were degraded due to charcoal production. By describing the chain of charcoal, it was possible to access the driving factors for charcoal production and to obtain the first-time overview flow of charcoal from producers to consumers in Bié province. The demand for charcoal in this province is more likely to remain strong if government policies do not aim to employ alternative sources of domestic energy.


2021 ◽  
Vol 13 (22) ◽  
pp. 4589
Author(s):  
Kevin M. Woods ◽  
Panshi Wang ◽  
Joseph O. Sexton ◽  
Peter Leimgruber ◽  
Jesse Wong ◽  
...  

Armed conflict and geopolitics are a driving force of Land Use and Land Cover Change (LULCC), but with considerable variation in deforestation trends between broader and finer scales of analysis. Remotely-sensed annual deforestation rates from 1989 to 2018 are presented at the national and (sub-) regional scales for Kachin State in the north of Myanmar and in Kayin State and Tanintharyi Region in the southeast. We pair our multiscaled remote sensing analysis with our multisited political ecology approach where we conducted field-based interviews in study sites between 2018 and 2020. Our integrated analysis identified three common periods of deforestation spikes at the national and state/region level, but with some notable disparities between regions as well as across and within townships and village tracts. We found the rate and geography of deforestation were most influenced by the territorial jurisdictions of armed authorities, national political economic reforms and timber regulations, and proximity to national borders and their respective geopolitical relations. The absence or presence of ceasefires in the north and southeast did not solely explain deforestation patterns. Rather than consider ceasefire or war as a singular explanatory variable effecting forest cover change, we demonstrate the need to analyze armed conflict as a dynamic multisited and diffuse phenomenon, which is simultaneously integrated into broader political economy and geopolitical forces.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Emmanuel Da Da Ponte ◽  
Monserrat García-Calabrese ◽  
Jennifer Kriese ◽  
Nestor Cabral ◽  
Lidia Perez de Perez de Molas ◽  
...  

Over the past 40 years, Paraguay has lost the majority of its natural forest cover, thus becoming one of the countries with the highest deforestation rates in the world. The rapid expansion of the agricultural frontier, cattle ranching, and illegal logging between 1987 and 2012 resulted in the loss of 27% of original forest cover, equivalent to almost 44,000 km2. Within this context, the present research provides the first yearly analysis of forest cover change in the Paraguayan Chaco between the years 1987 and 2020. Remote sensing data obtained from Landsat images were applied to derive annual forest cover masks and deforestation rates over 34 years. Part of this study is a comprehensive assessment of the effectiveness of protected areas, as well as an analysis of the degree of fragmentation of the forest. All classification results obtained accuracies above 80% and revealed a total forest cover loss of approximately 64,700 km2. Forest clearing within protected areas was not frequent; however, some natural reserves presented losses of up to 25% of their forest cover. Through the consideration of several landscape metrics, this study reveals an onward fragmentation of forest cover, which endangers the natural habitat of numerous species.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 426
Author(s):  
David Skole ◽  
Jay Samek ◽  
Cheikh Mbow ◽  
Michael Chirwa ◽  
Dan Ndalowa ◽  
...  

Spatial time-series measurements of forest degradation rates are important for estimating national greenhouse gas emissions but have been challenging for open forests and woodlands. This lack of quantitative data on forest degradation rates, location and biomass is an important constraint to developing national REDD+ policy. In Malawi, and in most countries in Africa, most assessments of forest cover change for carbon emissions monitoring tend to report only deforestation in the public forest estate managed by the government, even when important forest degradation also occurs in agricultural areas, such as customary forests and other tree-based systems. This study has resulted in: (a) a new robust forest map for Malawi, (b) spatial and quantitative measurements of both forest degradation and deforestation, and (c) a demonstration of the approach through the introduction of a tool that maps across the broad landscape of forests and trees outside of forests. The results can be used to support REDD+ National Forest Monitoring Systems. This analysis produces new estimates of landscape-wide deforestation rates between 2000–2009 (22,410 ha yr−1) and 2009–2015 (38,937 ha yr−1). We further produce new estimates of the rate of forest degradation between 2000–2009 (42,961 ha yr−1) and 2009–2015 (71,878 ha yr−1). The contribution of these new tools and estimates to capacities for calculating carbon emissions are important, increasing prospects for full REDD+ readiness across semi-arid Africa.


Author(s):  
M. D. Velasco Gomez ◽  
R. Beuchle ◽  
Y. Shimabukuro ◽  
R. Grecchi ◽  
D. Simonetti ◽  
...  

Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth’s largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km × 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.


2021 ◽  
Author(s):  
Sylus Kipngeno Musei ◽  
Justine Muhoro Nyaga ◽  
Abdi Zeila Dubow

Deforestation is a driver of land degradation and a major environmental problem in Somalia, and has been linked to frequent incidences of drought over the years. Monitoring of changes in forest cover is therefore critical for the country’s environment. The problem of land degradation has been worsened by the large scale charcoal production that is witnessed in the country. This study aimed at estimating forest cover change between 2000 and 2019 in Somalia using Landsat-based forest cover datasets. Google Earth Engine (GEE), a cloud based computing system was used to provide a platform for this analysis. Based on the 30% threshold recommended by International Geosphere Biosphere Program for differentiating forest from non-forest trees, approximately 23% forest cover loss was found, from 87, 294 hectares in 2000 to 67, 199 hectares in 2019. Most of the country’s forest is within the southern and central parts of the country, and significant forest cover losses occurred mainly around Mogadishu and Kismayo port throughout the study period. There is therefore a need for the Federal Ministry of Environment and environment ministries in the federal member states to design mechanisms and strategies for restoration of the degraded forests and to curb deforestation.


Mangroves provide valuable services to the coastal community in Trincomalee District despite they distributed in the small area. The objectives of this research are to map out the distribution of the mangroves and to detect the change in mangroves in Trincomalee District during the last 20 years. According to this study the reduction in the extent of mangroves caused by clearance for alternative land use including aquaculture, tourism. The total extent of mangroves in Trincomalee district was estimated using Landsat satellite imageries 1997 and 2017. The medium resolution of Landsat imageries may lead to underestimating relatively small, linear mangroves in coastal line of Trincomalee district. The occurrence of clouds in the coastal area can cause data gaps during analysis. This study estimated total mangroves in Trincomalee district was 20.26km2 and 15.07 km2 in 1997 and 2017 respectively and representing a loss of 5.19 km2 in the 20 years (1997-2017). Mangroves loss in the study area varied both spatially and temporally due to differences in habitat alteration pattern. However, Landsat images adequately aided to detect changes in mangroves in Trincomalee district which shows the rate of decline in mangroves.


Sign in / Sign up

Export Citation Format

Share Document