Forest ecosystem services and biodiversity in contrasting Himalayan forest management systems

2013 ◽  
Vol 41 (1) ◽  
pp. 73-83 ◽  
Author(s):  
INGER E. MÅREN ◽  
KHEM R. BHATTARAI ◽  
RAM P. CHAUDHARY

SUMMARYIn developing countries, the landscape surrounding agricultural land is important for maintaining biodiversity and providing ecosystem services. Forests provide a full suite of goods and services to subsistence farmers in the Himalayan agro-ecological system. The effects of biomass outtake on woody species richness and composition were analysed in forests under communal and government management. Interviews on forest use and perception of forest condition and ecosystem service delivery were conducted in farmer households bordering the forests. Significantly more woody species were found in the community managed forests. Species richness was negatively correlated with walking distance from the nearest village and increasing levels of anthropogenic disturbance. Community forests were generally less degraded than government managed forests, giving support to common pool resource management. Woody vegetation represented a crucial source of fuelwood, timber, fodder, and edible, aromatic and medicinal plants. Using a multidisciplinary framework to analyse ecosystem integrity and ecosystem service delivery enabled a finer understanding of these complex agro-ecological systems, giving support to evidence-based management and conservation planning for the future.

2020 ◽  
Vol 12 (4) ◽  
pp. 710 ◽  
Author(s):  
Trinidad del Río-Mena ◽  
Louise Willemen ◽  
Anton Vrieling ◽  
Andy Nelson

Landscape processes fluctuate over time, influencing the intra-annual dynamics of ecosystem services. However, current ecosystem service assessments generally do not account for such changes. This study argues that information on the dynamics of ecosystem services is essential for understanding and monitoring the impact of land management. We studied two regulating ecosystem services (i. erosion prevention, ii. regulation of water flows) and two provisioning services (iii. provision of forage, iv. biomass for essential oil production) in thicket vegetation and agricultural fields in the Baviaanskloof, South Africa. Using models based on Sentinel-2 data, calibrated with field measurements, we estimated the monthly supply of ecosystem services and assessed their intra-annual variability within vegetation cover types. We illustrated how the dynamic supply of ecosystem services related to temporal variations in their demand. We also found large spatial variability of the ecosystem service supply within a single vegetation cover type. In contrast to thicket vegetation, agricultural land showed larger temporal and spatial variability in the ecosystem service supply due to the effect of more intensive management. Knowledge of intra-annual dynamics is essential to jointly assess the temporal variation of supply and demand throughout the year to evaluate if the provision of ecosystem services occurs when most needed.


2021 ◽  
Author(s):  
Fabio Carvalho ◽  
Alona Armstrong ◽  
Mark Ashby ◽  
Belinda Howell ◽  
Hannah Montag ◽  
...  

<p>According to the latest IPCC report, 70 to 85% of electricity generation worldwide will need to come from renewable sources of energy by 2050 if countries are to meet internationally agreed greenhouse gas emissions targets. In the rush to decarbonise energy supplies to meet such targets, solar parks (SPs) have proliferated around the world, with uncertain implications for the biodiversity and ecosystem service (ES) provision of hosting ecosystems. SPs necessitate significant land-use change that could disproportionately affect the local environment compared to other low-carbon sources.</p><p>In Britain, SPs are commonly built on intensive arable land and managed as grasslands. This offers both risks and opportunities for ecosystem health, yet evidence for assessing ecosystem consequences is scarce. Therefore, there is an urgent need to understand how net environmental gains can be integrated into land-use change for solar energy development to address the current biodiversity and climate crises.</p><p>We used vegetation data from over 70 SPs and 50 countryside survey plots (1 km<sup>2</sup>) in England and Wales to assess the effects of land-use change for SPs on plant diversity and ES provision. We assessed ten habitat indicator variables (e.g., species richness, larval food plants, forage grasses, bird food plants) associated to functionally important plant species that have the potential to enhance ecosystem service delivery.</p><p>SPs showed higher diversity of habitat indicator species than arable land and improved grasslands, with vegetation between solar arrays showing higher numbers of species important for ES provision (e.g., N-fixing species important for nutrient cycling) than vegetation under solar panels. Overall, the diversity of habitat indicator species seemed highly dependent on former land-use, showing SPs have the potential to enhance ecosystem services provision if built on degraded agricultural land.</p><p>Developing this understanding will enable optimisation of SP design and management to ensure delivery of ecosystem co-benefits from this growing land-use.</p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9582
Author(s):  
Lei Shi ◽  
Ümüt Halik ◽  
Zulpiya Mamat ◽  
Zhicheng Wei

Rapid agricultural land expansion and urbanization have accelerated land use and land cover changes (LUCC) in the Northern Tianshan Mountain Economic Zone and have significantly impacted on the ecosystem services (ESs). However, the spatiotemporal variations of ecosystem service value (ESV) to LUCC are not well understood. Based on the land use and land cover (LULC) data from 1980 to 2019, we used a CA-Markov model to predict LUCC in 2020 and 2030, assess the spatial-temporal changes of ESV and LULC during 1980–2030, and explore the elastic response of ESV to LUCC. We found that cropland and built-up land expanded rapidly by 34.38% and 196.66%, respectively between 1980 and 2030, while grassland and unutilized land decreased significantly by 11.45% and 10.26%, respectively. The ESV of water body, cropland, grassland and forestland accounts for more than 90% of the total ESV. Our research shows that the ESV of cropland increased 32 million yuan from 1980 to 2030, mainly due to the expansion of cropland area. However, the loss caused by the reduction of grassland area was 45 million yuan. Water conservation, waste treatment, soil formation and retention, and biodiversity conservation are the primary ecosystem service function, accounting for 71.82% of the total ESV. Despite notable increases in the ESV from 1980 to 2010, grassland degradation still remains a main ecological and environmental issue from 2010 to 2030. The results suggest that effective land use policies should be developed to control the expansion of croplands and protect water body, grassland and forestland to maintain more sustainable ESs.


AMBIO ◽  
2020 ◽  
Vol 49 (11) ◽  
pp. 1784-1796 ◽  
Author(s):  
Jan E. Vermaat ◽  
Bart Immerzeel ◽  
Eija Pouta ◽  
Artti Juutinen

Abstract The inherently unknown future development of a Nordic bio-economy was studied with four scenarios applied in an ecosystem service assessment framework. This framework couples CORINE land use cover with estimates of 15 final ecosystem services from the CICES 5.1 classification in biophysical and monetary terms. Current land use in two catchments, Lillebæk (83% cropland, area 4.7 km2, Denmark) and Ovre Haldenvassdraget (67% forest, 1006 km2, Norway) was compared with four scenarios for 2050. One scenario focusing on sustainability and environmental awareness led to considerable changes in land use and ecosystem service delivery (more diverse provisioning and higher value of regulating services, but not a higher total economic value), whereas the other three did not deviate markedly from the current scenario. Projected land use scenarios were verified with experts and stakeholder representatives. We conclude that the framework has sufficient resolution to show differences in service delivery among scenarios.


2020 ◽  
Vol 2 (1) ◽  
pp. 61-78
Author(s):  
Shivaraj Thapa ◽  
Subina Shrestha ◽  
Suman Bhattarai ◽  
Mahamad Sayab Miya ◽  
Deepak Gautam

Phewa watershed, the second largest natural lake system in Nepal, is considered vital for the well being and economy at local, provincial and national level. Phewa watershed offers multiple benefits to the downstream dwellers involved in tourism, hotel, boating, fishing, irrigation, hydropower, etc. The constant degradation of watershed has become a serious challenge to sustain the watershed. Payment for Ecosystem Services (PES) can be an effective environmental management tool for sustaining ecological and economic benefits, especially in an urban watershed like Phewa. This study has assessed the opportunities for the potentialityof PES in Phewa watershed. It first identified and ranked the tradable ecosystem services along with service providers and beneficiaries using Likert scale. Then, 137 households were surveyed to evaluate their perceptions of payment for ecosystem services and sustainable management of Phewa Lake. The results identified tourism as the major ecosystem service in the watershed followed by biodiversity and sediment retention to control flooding and erosion. Protected and community forests users groups within the watershed area, landowners, and farmers were identified as upstream users or service providers whereas the business owners like boat agencies, hotels and restaurants, drinking water users, and Nepal electricity authority were identifiedas the service beneficiaries of the identified ecosystem service. The challenges associated with implementing PES scheme were the lack of financial resource, lack of institutional organization and marketing for ecosystem services, population growth, lack of coordination between stakeholders, and lack of public participation. Thus, this study showed that education-based activities should be organized to enhance participation of beneficiaries and upstream dwellers. Also, PES policy mechanism with clear guidelines should be formulated for assuring the participation of the community people forthe implementation of PES.


2021 ◽  
Author(s):  
◽  
Sky Halford

<p>Ecosystem services encompass the wide range of intrinsic and extrinsic benefits that humans derive from ecosystems and how such services contribute to community wellbeing. The delivery of effective and efficient provisioning, regulating, and cultural ecosystem services at Lake Wairarapa (a shallow, super-trophic, coastal lake in the lower North Island) has been heavily impacted through current land use. Using a pragmatic epistemology and mixed methods approach, this research sought to understand the past, present, and future delivery of ecosystem services at Lake Wairarapa through three distinct, yet complementary, studies.  Firstly, a palaeo-environmental reconstruction using five proxies was completed to build an understanding of past environmental conditions at Lake Wairarapa. Prior to human arrival, the lake was stable and resilient in response to environmental perturbations. However, alteration of the landscape following human arrival has reduced ecosystem service effectiveness, prompting a transition into an entirely new environmental state at Lake Wairarapa. This chapter highlighted the abrupt removal of mānuka and centennial shift from a forest catchment into one dominated by agriculture so a field trial was conducted to assess the ability of mānuka to reduce nitrogen leaching and E. coli contamination. Mānuka can significantly reduce the conversion of ammonium to nitrate compared to pasture, thus regulating nitrate leaching; however, the impact on E. coli counts was less conclusive. Finally, cultural services present at Lake Wairarapa and future community aspirations were assessed through seven semi-structured interviews of Wairarapa community members. Place attachment was recognised as the underlying factor that facilitated strong cultural service delivery. Social and environmental restoration was identified as the key vision for the future, underpinned by collaboration within resource management.  From this research, four recommendations were made to enhance ecosystem service delivery at Lake Wairarapa: establishment of ecologically appropriate restoration plans, facilitated collaborative management, further investigation of environmental and economic properties of mānuka, and development of community engagement programmes. This multi-disciplinary and holistic approach outlines a pathway towards a positive and inclusive future for Lake Wairarapa and its communities.</p>


2022 ◽  
Author(s):  
◽  
Sheron Y. Luk

Coastal ecosystems provide key services that benefit human wellbeing yet are undergoing rapid degradation due to natural and anthropogenic pressures. This thesis seeks to understand how disturbances impact salt marsh and estuarine ecosystem functioning in order to refine their role in coastal ecosystem service delivery and predict future resilience. Salt marsh survival relative to sealevel rise increasingly relies on the accumulation and preservation of soil organic carbon (SOC). Firstly, I characterized SOC development and turnover in a New England salt marsh and found that salt marsh soils typically store marsh grass-derived compounds that are reworked over centuries-to-millennia. Next, I assessed how two common marsh disturbances – natural ponding and anthropogenic mosquito ditching – affect salt marsh carbon cycling and storage. Salt marsh ponds deepen through soil erosion and decomposition of long-buried marsh peat. Further, the SOC lost during pond development is not fully recouped once drained ponds are revegetated and virtually indistinguishable from the surrounding marsh. Mosquito ditches, which were installed in ~ 90% of New England salt marshes during the Great Depression, did not significantly alter marsh carbon storage. In Buzzards Bay, Massachusetts, a US National Estuary, we tested relationships among measures of estuarine water quality, recreational activity, and local socioeconomic conditions to understand how the benefits of cultural ecosystem services are affected by shifts in water quality associated with global change and anthropogenic activity. Over a 24-year period, water quality degradation coinciding with increases in Chlorophyll a is associated with declines in fishery abundance and cultural ecosystem service values ($0.08 – 0.67 million USD). In combination, incorporation of both anthropogenic and natural disturbances to coastal ecosystem functioning and service delivery can produce improved estimates of ecosystem service valuation for effective resource decision-making under future climate scenarios.


2021 ◽  
Author(s):  
◽  
Sky Halford

<p>Ecosystem services encompass the wide range of intrinsic and extrinsic benefits that humans derive from ecosystems and how such services contribute to community wellbeing. The delivery of effective and efficient provisioning, regulating, and cultural ecosystem services at Lake Wairarapa (a shallow, super-trophic, coastal lake in the lower North Island) has been heavily impacted through current land use. Using a pragmatic epistemology and mixed methods approach, this research sought to understand the past, present, and future delivery of ecosystem services at Lake Wairarapa through three distinct, yet complementary, studies.  Firstly, a palaeo-environmental reconstruction using five proxies was completed to build an understanding of past environmental conditions at Lake Wairarapa. Prior to human arrival, the lake was stable and resilient in response to environmental perturbations. However, alteration of the landscape following human arrival has reduced ecosystem service effectiveness, prompting a transition into an entirely new environmental state at Lake Wairarapa. This chapter highlighted the abrupt removal of mānuka and centennial shift from a forest catchment into one dominated by agriculture so a field trial was conducted to assess the ability of mānuka to reduce nitrogen leaching and E. coli contamination. Mānuka can significantly reduce the conversion of ammonium to nitrate compared to pasture, thus regulating nitrate leaching; however, the impact on E. coli counts was less conclusive. Finally, cultural services present at Lake Wairarapa and future community aspirations were assessed through seven semi-structured interviews of Wairarapa community members. Place attachment was recognised as the underlying factor that facilitated strong cultural service delivery. Social and environmental restoration was identified as the key vision for the future, underpinned by collaboration within resource management.  From this research, four recommendations were made to enhance ecosystem service delivery at Lake Wairarapa: establishment of ecologically appropriate restoration plans, facilitated collaborative management, further investigation of environmental and economic properties of mānuka, and development of community engagement programmes. This multi-disciplinary and holistic approach outlines a pathway towards a positive and inclusive future for Lake Wairarapa and its communities.</p>


2018 ◽  
Vol 30 ◽  
pp. 102-120
Author(s):  
Pratiksha Shrestha ◽  
Ram Prasad Chaudhary ◽  
Krishna Kumar Shrestha ◽  
Dharma Raj Dangol

Floristic diversity is studied based on gender in two different management committee community forests (Barangdi-Kohal jointly managed community forest and Bansa-Gopal women managed community forest) of Palpa district, west Nepal. Square plot of 10m×10m size quadrat were laid for covering all forest areas and maintained minimum 40m distance between two quadrats. Altogether 68 plots (34 in each forest) were sampled. Both community forests had nearly same altitudinal range, aspect and slope but differed in different environmental variables and members of management committees. All the species present in quadrate and as well as outside the quadrate were recorded for analysis. There were 213 species of flowering plant belonging to 67 families and 182 genera. Barangdi-Kohal JM community forest had high species richness i.e. 176 species belonging to 64 families and 150 genera as compared to Bansa-Gopal WM community forest with 143 species belonging to 56 families and 129 genera. According to different life forms and family and genus wise jointly managed forest has high species richness than in women managed forest. Both community forest are banned for fodder, fuel wood and timber collection without permission of management comities. There is restriction of grazing in JM forest, whereas no restriction of grazing in WM forest.


Sign in / Sign up

Export Citation Format

Share Document