Experimental Dissection of the Cellular Machinery Involved in Receptor Mediated Endocytosis and Translocation
The cultured human lymphoblastoid cell line WiL2 is a model system of choice for studies on receptor mediated endocytosis (RME). These cells display antigen receptor immunoglobulin of the IgM class (rIgM) as integral plasma membrane proteins which are present in diffuse cell surface distribution in unstimulated cells. Initially, rIgM occurs over uncoated regions of the plasma membrane. Crosslinking rIgM with multivalent antibody (ligand) results in the entry of ferritin-labelled ligand-rIgM complexes into the RME pathway (Figure 1). Stimulation of RME by ligand challenge results in an approximately three-fold increase in cell surface area displaying clathrin coats on the cytoplasmic face of the membrane. The newly formed coated pits are located directly beneath ferritin-labelled ligand-receptor complexes and their appearance is sensitive to the calmodulin directed drug trifluoperazine dihydrochloride (TFP). Calmodulin is a calcium dependent regulatory protein which recognizes local transient fluxes of cytoplasmic Ca+2 and activates a wide variety of enzymes and other protein systems. In addition, antibodies raised against calf brain calmodulin were used in indirect immunofluorescence studies.