Inhibition of clathrin-coated pit assembly by an Eps15 mutant

1999 ◽  
Vol 112 (9) ◽  
pp. 1303-1311 ◽  
Author(s):  
A. Benmerah ◽  
M. Bayrou ◽  
N. Cerf-Bensussan ◽  
A. Dautry-Varsat

Recent data have shown that Eps15, a newly identified component of clathrin-coated pits constitutively associated with the AP-2 complex, is required for receptor-mediated endocytosis. However, its precise function remains unknown. Interestingly, Eps15 contains three EH (Eps15-Homology) domains also found in proteins required for the internalization step of endocytosis in yeast. Results presented here show that EH domains are required for correct coated pit targeting of Eps15. Furthermore, when cells expressed an Eps15 mutant lacking EH domains, the plasma membrane punctate distribution of both AP-2 and clathrin was lost, implying the absence of coated pits. This was further confirmed by the fact that dynamin, a GTPase found in coated pits, was homogeneously redistributed on the plasma membrane and that endocytosis of transferrin, a specific marker of clathrin-dependent endocytosis, was strongly inhibited. Altogether, these results strongly suggest a role for Eps15 in coated pit assembly and more precisely a role for Eps15 in the docking of AP-2 onto the plasma membrane. This hypothesis is supported by the fact that a GFP fusion protein encoding the ear domain of (alpha)-adaptin, the AP-2 binding site for Eps15, was efficiently targeted to plasma membrane coated pits.

1998 ◽  
Vol 140 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
Alexandre Benmerah ◽  
Christophe Lamaze ◽  
Bernadette Bègue ◽  
Sandra L. Schmid ◽  
Alice Dautry-Varsat ◽  
...  

We have previously shown that the protein Eps15 is constitutively associated with the plasma membrane adaptor complex, AP-2, suggesting its possible role in endocytosis. To explore the role of Eps15 and the function of AP-2/Eps15 association in endocytosis, the Eps15 binding domain for AP-2 was precisely delineated. The entire COOH-terminal domain of Eps15 or a mutant form lacking all the AP-2–binding sites was fused to the green fluorescent protein (GFP), and these constructs were transiently transfected in HeLa cells. Overexpression of the fusion protein containing the entire COOH-terminal domain of Eps15 strongly inhibited endocytosis of transferrin, whereas the fusion protein in which the AP-2–binding sites had been deleted had no effect. These results were confirmed in a cell-free assay that uses perforated A431 cells to follow the first steps of coated vesicle formation at the plasma membrane. Addition of Eps15-derived glutathione-S-transferase fusion proteins containing the AP-2–binding site in this assay inhibited not only constitutive endocytosis of transferrin but also ligand-induced endocytosis of epidermal growth factor. This inhibition could be ascribed to a competition between the fusion protein and endogenous Eps15 for AP-2 binding. Altogether, these results show that interaction of Eps15 with AP-2 is required for efficient receptor-mediated endocytosis and thus provide the first evidence that Eps15 is involved in the function of plasma membrane–coated pits.


1997 ◽  
Vol 139 (6) ◽  
pp. 1465-1476 ◽  
Author(s):  
Norio Sakai ◽  
Keiko Sasaki ◽  
Natsu Ikegaki ◽  
Yasuhito Shirai ◽  
Yoshitaka Ono ◽  
...  

We expressed the γ-subspecies of protein kinase C (γ-PKC) fused with green fluorescent protein (GFP) in various cell lines and observed the movement of this fusion protein in living cells under a confocal laser scanning fluorescent microscope. γ-PKC–GFP fusion protein had enzymological properties very similar to that of native γ-PKC. The fluorescence of γ-PKC– GFP was observed throughout the cytoplasm in transiently transfected COS-7 cells. Stimulation by an active phorbol ester (12-O-tetradecanoylphorbol 13-acetate [TPA]) but not by an inactive phorbol ester (4α-phorbol 12, 13-didecanoate) induced a significant translocation of γ-PKC–GFP from cytoplasm to the plasma membrane. A23187, a Ca2+ ionophore, induced a more rapid translocation of γ-PKC–GFP than TPA. The A23187-induced translocation was abolished by elimination of extracellular and intracellular Ca2+. TPA- induced translocation of γ-PKC–GFP was unidirected, while Ca2+ ionophore–induced translocation was reversible; that is, γ-PKC–GFP translocated to the membrane returned to the cytosol and finally accumulated as patchy dots on the plasma membrane. To investigate the significance of C1 and C2 domains of γ-PKC in translocation, we expressed mutant γ-PKC–GFP fusion protein in which the two cysteine rich regions in the C1 region were disrupted (designated as BS 238) or the C2 region was deleted (BS 239). BS 238 mutant was translocated by Ca2+ ionophore but not by TPA. In contrast, BS 239 mutant was translocated by TPA but not by Ca2+ ionophore. To examine the translocation of γ-PKC–GFP under physiological conditions, we expressed it in NG-108 cells, N-methyl-d-aspartate (NMDA) receptor–transfected COS-7 cells, or CHO cells expressing metabotropic glutamate receptor 1 (CHO/mGluR1 cells). In NG-108 cells , K+ depolarization induced rapid translocation of γ-PKC–GFP. In NMDA receptor–transfected COS-7 cells, application of NMDA plus glycine also translocated γ-PKC–GFP. Furthermore, rapid translocation and sequential retranslocation of γ-PKC–GFP were observed in CHO/ mGluR1 cells on stimulation with the receptor. Neither cytochalasin D nor colchicine affected the translocation of γ-PKC–GFP, indicating that translocation of γ-PKC was independent of actin and microtubule. γ-PKC–GFP fusion protein is a useful tool for investigating the molecular mechanism of γ-PKC translocation and the role of γ-PKC in the central nervous system.


1983 ◽  
Vol 97 (2) ◽  
pp. 329-339 ◽  
Author(s):  
C Harding ◽  
J Heuser ◽  
P Stahl

At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin-resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.


Author(s):  
J.L. Salisbury

The cultured human lymphoblastoid cell line WiL2 is a model system of choice for studies on receptor mediated endocytosis (RME). These cells display antigen receptor immunoglobulin of the IgM class (rIgM) as integral plasma membrane proteins which are present in diffuse cell surface distribution in unstimulated cells. Initially, rIgM occurs over uncoated regions of the plasma membrane. Crosslinking rIgM with multivalent antibody (ligand) results in the entry of ferritin-labelled ligand-rIgM complexes into the RME pathway (Figure 1). Stimulation of RME by ligand challenge results in an approximately three-fold increase in cell surface area displaying clathrin coats on the cytoplasmic face of the membrane. The newly formed coated pits are located directly beneath ferritin-labelled ligand-receptor complexes and their appearance is sensitive to the calmodulin directed drug trifluoperazine dihydrochloride (TFP). Calmodulin is a calcium dependent regulatory protein which recognizes local transient fluxes of cytoplasmic Ca+2 and activates a wide variety of enzymes and other protein systems. In addition, antibodies raised against calf brain calmodulin were used in indirect immunofluorescence studies.


2003 ◽  
Vol 23 (6) ◽  
pp. 2162-2170 ◽  
Author(s):  
Hong Cao ◽  
James D. Orth ◽  
Jing Chen ◽  
Shaun G. Weller ◽  
John E. Heuser ◽  
...  

ABSTRACT The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.


2005 ◽  
Vol 79 (7) ◽  
pp. 4080-4089 ◽  
Author(s):  
Matloob Husain ◽  
Bernard Moss

ABSTRACT Infectious intracellular mature vaccinia virus particles are wrapped by cisternae, which may arise from trans-Golgi or early endosomal membranes, and are transported along microtubules to the plasma membrane where exocytosis occurs. We used EH21, a dominant-negative form of Eps15 that is an essential component of clathrin-coated pits, to investigate the extent and importance of endocytosis of viral envelope proteins from the cell surface. Several recombinant vaccinia viruses that inducibly or constitutively express an enhanced green fluorescent protein (GFP)-EH21 fusion protein were constructed. Expression of GFP-EH21 blocked uptake of transferrin, a marker for clathrin-mediated endocytosis, as well as association of adaptor protein-2 with clathrin-coated pits. When GFP-EH21 was expressed, there were increased amounts of viral envelope proteins, including A33, A36, B5, and F13, in the plasma membrane, and their internalization was inhibited. Wrapping of virions appeared to be qualitatively unaffected as judged by electron microscopy, a finding consistent with a primary trans-Golgi origin of the cisternae. However, GFP-EH21 expression caused a 50% reduction in released enveloped virions, decreased formation of satellite plaques, and delayed virus spread, indicating an important role for receptor-mediated endocytosis. Due to dynamic interconnection between endocytic and exocytic pathways, viral proteins recovered from the plasma membrane could be used by trans-Golgi or endosomal cisternae to form new viral envelopes. Adherence of enveloped virions to unrecycled viral proteins on the cell surface may also contribute to decreased virus release in the presence of GFP-EH21. In addition to a salvage function, the retrieval of viral proteins from the cell surface may reduce immune recognition.


1993 ◽  
Vol 106 (3) ◽  
pp. 847-858
Author(s):  
M.E. Galway ◽  
P.J. Rennie ◽  
L.C. Fowke

An ultrastructural study of endocytosis has been made for the first time in protoplasts of a gymnosperm, white spruce (Picea glauca), fixed by high-pressure freezing and freeze substitution. Protoplasts derived from the WS1 line of suspension-cultured embryogenic white spruce were labelled with cationized ferritin, a non-specific marker of the plasma membrane. The timing of cationized ferritin uptake and its subcellular distribution were determined by fixing protoplasts at various intervals after labelling. To address concerns about using chemical fixation to study the membrane-bound transport of cationized ferritin, protoplasts were fixed both by conventional glutaraldehyde fixation and by rapid freezing in a Balzers high-pressure freezing apparatus (followed by freeze substitution). Cationized ferritin appeared rapidly in coated pits and coated vesicles after labelling. Later it was present in uncoated vesicles, and in Golgi bodies, trans-Golgi membranes and partially coated reticula, then subsequently in multivesicular bodies, which may ultimately fuse with and deliver their contents to lytic vacuoles. The results show that the time course and pathway of cationized ferritin uptake in the gymnosperm white spruce is very similar to the time course and pathway elucidated for cationized ferritin uptake in the angiosperm soybean. High-pressure freezing yielded much better preservation of intracellular membranes and organelles, although plasma membranes appeared ruffled. Protoplasts fixed by both methods possessed numerous smooth vesicles in the cortex and smooth invaginations of the plasma membrane. These became labelled with cationized ferritin, but apparently did not contribute directly to the internalization of cationized ferritin, except via the formation of coated pits and vesicles from their surfaces.


2006 ◽  
Vol 5 (6) ◽  
pp. 945-953 ◽  
Author(s):  
Guido Grossmann ◽  
Miroslava Opekarova ◽  
Linda Novakova ◽  
Jürgen Stolz ◽  
Widmar Tanner

ABSTRACT The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In these organisms, the HUP1 protein has previously been shown to be fully active. The GFP fusion protein was exclusively targeted to the plasma membranes of both types of fungal cells. In S. cerevisiae, it was distributed nonhomogenously and concentrated in spots resembling the patchy appearance observed previously for endogenous H+ symporters. It is documented that the Chlorella protein colocalizes with yeast proteins that are concentrated in 300-nm raft-based membrane compartments. On the other hand, it is completely excluded from the raft compartment housing the yeast H+/ATPase. As judged by their solubilities in Triton X-100, the HUP1 protein extracted from Chlorella and the GFP fusion protein extracted from S. cerevisiae are detergent-resistant raft proteins. S. cerevisiae mutants lacking the typical raft lipids ergosterol and sphingolipids showed a homogenous distribution of HUP1-GFP within the plasma membrane. In an ergosterol synthesis (erg6) mutant, the rate of glucose uptake was reduced to less than one-third that of corresponding wild-type cells. In S. pombe, the sterol-rich plasma membrane domains can be stained in vivo with filipin. Chlorella HUP1-GFP accumulated exactly in these domains. Altogether, it is demonstrated here that a plant membrane protein has the property of being concentrated in specific raft-based membrane compartments and that the information for its raft association is retained between even distantly related organisms.


1981 ◽  
Vol 29 (9) ◽  
pp. 1003-1013 ◽  
Author(s):  
M C Willingham ◽  
A V Rutherford ◽  
M G Gallo ◽  
J Wehland ◽  
R B Dickson ◽  
...  

Concentrative receptor-mediated endocytosis of many specific ligands by cultured fibroblasts occurs through the coated pit-receptosome pathway. The formation of receptosomes was studied using two impermeant electron-dense labels for the cell surface, ruthenium red and concanavalin A-horseradish peroxidase. These studies show that at 4 degrees C, virtually all coated structures near the plasma membrane are in communication with the cell surface, and are not isolated coated vesicles. On warming cells to 37 degrees C for only 1 minute, a major portion of these structures become cryptic, that is, not labeled by these surface markers. However, on cooling cells immediately back to 4 degrees C, virtually all of these structures are again in communication with the surface. Many images showed that membrane of these cryptic pits to be continuous with the cell surface when caught in the appropriate plane of section; often there was a very narrow entrance that excluded extracellular label. At 37 degrees C, receptosomes could be occasionally seen forming as an invagination of membrane adjacent to the coated region. Mechanisms by which receptosomes may form and other evidence demonstrating the failure of coated pits to pinch off to form isolated coated vesicles during endocytosis are discussed.


1994 ◽  
Vol 107 (12) ◽  
pp. 3461-3468 ◽  
Author(s):  
A. Subtil ◽  
A. Hemar ◽  
A. Dautry-Varsat

The cytokine interleukin 2 (IL2) is produced by activated helper T lymphocytes and modulates the growth and activity of cells expressing high-affinity surface IL2 receptors that transduce its signaling. After ligand binding to receptors on the plasma membrane, receptor-ligand complexes are rapidly endocytosed and IL2 is degraded in acidic compartments. The best known receptor-mediated endocytosis pathway involves clathrin-coated pits. Receptors that carry an internalization signal recognized by adaptors on the cytosolic side of the plasma membrane are clustered into the coated pits and enter cells very efficiently. Many receptors use this pathway, but other endocytic pathways have also been reported, for ricin, EGF and insulin, for instance, which seem to be less efficient than the coated one. We compared the endocytosis of IL2 and its receptors to that of transferrin, a marker of the coated pit pathway. Under normal conditions, the kinetics of entry of IL2 was two times slower than that of transferrin. When internalization via coated pits was inhibited by two different methods, potassium depletion and cytosol acidification, endocytosis of IL2 and its receptors was only partly inhibited, while transferrin entry was strongly affected. Treatment with the cationic amphiphilic drug chlorpromazine, which induces a redistribution of a clathrin-coated pit component, AP-2, to endosomes, reduced transferrin, but not IL2 internalization. Thus, unexpectedly, this cytokine and its receptors can still be rapidly endocytosed in the absence of functional clathrin-coated structures. We propose a model for receptor-mediated endocytosis that may account for these results and published data on other receptors.


Sign in / Sign up

Export Citation Format

Share Document