Ultra-high-vacuum, high-resolution Transmission Electron Microscopy at 400 kV

Author(s):  
F. A. Ponce ◽  
S. Suzuki ◽  
H. Kobayashi ◽  
Y. Ishibashi ◽  
Y. Ishida ◽  
...  

Electron microscopy in an ultra high vacuum (UHV) environment is a very desirable capability for the study of surfaces and for near-atomic-resolution imaging. The existence of amorphous layers on the surface of the sample generally prevents the direct observation of the free surface structure and limits the degree of resolution in the transmission electron microscope (TEM). In conventional TEM, these amorphous layers are often of organic nature originating from the electron bombardment of hydrocarbons in the vicinity of the sample. They can in part also be contaminants which develop during the specimen preparation and transport stages. In the specimen preparation stage, contamination can occur due to backsputtering during the ion milling process. In addition, oxide layers develop from contact to air during transport to the TEM. In order to avoid these amorphous overlayers it is necessary: i) to improve the vacuum of the instrument, thus the need for ultra high vacuum; and ii) to be able to clean the sample and transfer it to the column of the instrument without breaking the vacuum around the sample.

2014 ◽  
Vol 20 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Esperanza Luna ◽  
Javier Grandal ◽  
Eva Gallardo ◽  
José M. Calleja ◽  
Miguel Á. Sánchez-García ◽  
...  

AbstractWe discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


1998 ◽  
Vol 523 ◽  
Author(s):  
John Mardinly ◽  
David W. Susnitzky

AbstractThe demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.


1998 ◽  
Vol 4 (S2) ◽  
pp. 608-609
Author(s):  
Ruud M. Tromp

To obtain a full and detailed understanding of the spatiotemporal dynamics of surface processes such as epitaxial growth, strain relaxation, phase transformations and phase transitions, chemisorption and etching, in situ real-time observations have proven to be invaluable. The development of two experimental techniques, i.e. Low Energy Electron Microscopy (LEEM) typically operating at electron energies below 10 eV, and Ultra-High-Vacuum Transmission Electron Microscopy (UHV-TEM) at several 100 keV, has made such in situ studies routinely possible. In many cases, the videodata obtained from such experiments are amenable to detailed, quantitative analysis, yielding statistical, kinetic and thermodynamic information that cannot be obtained in any other way.I will discuss recent experimental developments, including the design and construction of a new and improved LEEM instrument. Figure 1 shows a schematic diagram of this new machine. There are several features that distinguishes this design from most other LEEMs. One is the use of a 90 degree deflection magnetic prism array,


2001 ◽  
Vol 7 (6) ◽  
pp. 486-493 ◽  
Author(s):  
Judith C. Yang ◽  
Mridula D. Bharadwaj ◽  
Guangwen Zhou ◽  
Lori Tropia

AbstractWe review our studies of the initial oxidation stages of Cu(001) thin films as investigated by in situ ultra-high vacuum transmission electron microscopy. We present our observations of surface reconstruction and the nucleation to coalescence of copper oxide during in situ oxidation in O2. We have proposed a semi-quantitative model, where oxygen surface diffusion is the dominant mechanism of the initial oxidation stages of Cu. We have also investigated the effect of water vapor on copper oxidation. We have observed that the presence of water vapor in the oxidizing atmosphere retards the rate of Cu oxidation and Cu2O is reduced when exposed directly to steam.


Author(s):  
R. H. Geiss ◽  
K. R. Lawless

Pre-thinned high purity tantalum sheet was oxidized in high purity oxygen at 500°C in an ultra high vacuum reactor vessel at pressures of 10 to 100 microns for 30 to 90 minutes. Transmission electron microscopy revealed changes in the microstructure as the oxidation progressed and electron diffraction showed many different sub-oxide phases and marked ordering effects.For the lowest oxygen exposure, 10 microns for 30 minutes, a microstructure showing both large and small domains was found, Figure 1. As can be seen the size and shape of the domains varied considerably. The long narrow domains are near the edge of the foil and all have boundaries along ﹛100﹜ In intermediate regions, about one micron in from the edge, the domains have a peculiar “air plane” shape with boundaries along both ﹛100﹜ and ﹛110﹜ and “wings” adjacent to the ﹛100﹜ boundary. Interspaced among the airplane shaped domains and in regions up to 3 microns from the edge are very small, interconnected nuclei.


Sign in / Sign up

Export Citation Format

Share Document