Effect of alkali cations on the microstructure and composition of iron silicate catalysts

Author(s):  
J. Ulan ◽  
R. Gronsky

Zeolites are shape selective catalysts widely used in industry. Selectivity arises from the fact that zeolites possess channels several angstroms in diameter which limits the size of species that can easily diffuse through. Promoted iron oxide is a highly active catalyst for the synthesis of hydrocarbons from CO and H2 (Fischer-Tropsch reaction) but researchers would like to narrow product selectivity to the C7-C10 gasoline range. Selectivity is improved by dispersing iron on zeolites and efforts are now directed at maximizing the iron distribution in the zeolite channels. One approach is to first incorporate iron directly into the zeolite framework during synthesis and then remove the iron from the zeolite framework and ideally form catalytically active iron oxide particles within the channels while still maintaining the pore structure of the zeolite. Iron silicate analogs of the zeolite ZSM-5 (FeZSM-5) have been synthesized and thermal treatments have been employed to produce a catalytic active material. The complete characterization by SEM and TEM of a series of FeZSM-5 catalysts with various Si/Fe ratios and preparation conditions has been achieved. This presentation is a continuation of that work. Three series of FeZSM-5 catalysts were synthesized, two had Si/Fe ratios of 45 with different Si/Al ratios and one had a Si/Fe ratio of 25. In each series, the synthetic conditions were modified by adding alkali metal cations (Li+, Na+ and K+) to the reaction mixture. It has been shown with ZSM-5 that the addition of alkali cations during synthesis produces large single crystals. The effect of alkali cations on the growth of zeolite analogs is interesting for several independent reasons ranging from basic studies of the mechanism of zeolite growth to practical experimental considerations. Single crystals are very desirable for electron microscopy studies: results are unambiguous for a single crystallite in one orientation compared to a region with many overlapping small particles.

2004 ◽  
Vol 16 (10) ◽  
pp. 2016-2020 ◽  
Author(s):  
Daniele Bonacchi ◽  
Andrea Caneschi ◽  
Dominique Dorignac ◽  
Andrea Falqui ◽  
Dante Gatteschi ◽  
...  

1960 ◽  
Vol XXXV (II) ◽  
pp. 225-234 ◽  
Author(s):  
R. Bourrillon ◽  
R. Got ◽  
R. Marcy

ABSTRACT A new method for preparation of Human Menopausal Gonadotrophin involves successively alcoholic precipitation, kaolin adsorption and chromatography on ion exchangers. A highly active material is obtained which corresponds to 1 mg per litre of urine and has an activity of 1 mouse uterus unit at a dose of 0.003 mg. This gonadotrophin possesses both follicle stimulating and luteinizing activities in hypophysectomized female rats, by histological study. It contains 13 % hexose, 10% hexosamine and 8.5 % sialic acid. A further purification, by zone electrophoresis on starch, gives a final product, biologically active at 0.001 mg, which behaves as an homogenous substance in free electrophoresis with mobility −4.76 × 10−5 at pH 8.6.


2021 ◽  
Vol 23 (3) ◽  
pp. 1248-1258
Author(s):  
Shannon M. North ◽  
Steven P. Armes

An atom-efficient, wholly aqueous one-pot synthesis of zwitterionic diblock copolymers has been devised. Such copolymers can serve as highly effective aqueous dispersants for nano-sized transparent yellow iron oxide particles.


2010 ◽  
Vol 12 (7) ◽  
pp. 1281 ◽  
Author(s):  
Camino Gonzalez-Arellano ◽  
Kenta Yoshida ◽  
Rafael Luque ◽  
Pratibha L. Gai

2014 ◽  
Vol 59 (5) ◽  
pp. 1472
Author(s):  
J.M.S. Chan ◽  
C. Monaco ◽  
M. Wylezinska-Arridge ◽  
J.L. Tremoleda ◽  
R.G.J. Gibbs

2009 ◽  
Vol 4 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Geralda A. F. van Tilborg ◽  
Tessa Geelen ◽  
Hans Duimel ◽  
Paul H. H. Bomans ◽  
Peter M. Frederik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document