Scanning transmission x-ray microscopy of cultured cells

Author(s):  
J. Pine ◽  
John Gilbert

Soft x-rays provide an interesting possibility for imaging thick specimens at resolution better than that of the light microscope. Because of the way these x-rays interact with matter, a transmission image is formed essentially entirely by absorption, and suffers negligible blurring due to scattering. The only serious effect of sample thickness is to attenuate the x-ray beam. At x-ray wavelengths between 2.3 and 4.4 nm, the absorption is particularly appropriate for examining thick biological specimens. In this region water is weakly absorbing while carbon is strongly absorbing. As a result, absorption by a whole live cell is dominated by biological molecules. The magnitude of the absorption is such that cells up to ten microns thick can be imaged. Finally, these x-rays can traverse up to a millimater of air without serious attenuation. Transmission microscopy of live cells in air is thus possible.The technology for producing high resolution x-ray images has only recently become available. Zone-plate focussing has been perfected to the point where an x-ray beam spot 40 nm in diameter can be formed. This spot can be raster-scanned over a specimen and the transmitted x-rays detected, to form a scanning transmission x-ray microscope (STXM) image. The spot size, and resolution, are expected to improve to about 20 nm in the next few years. A very intense source of nearly monochromatic soft x-rays is also needed, at present only available at synchrotron light sources. We are working with a group from SUNY Stony Brook, IBM Watson Laboratories, and the Center for X-Ray Optics who have just finished building a microscope at the National Synchrotron Light Source. Two other microscopes are now being built, at Daresbury in England, and in Berlin.

1998 ◽  
Vol 4 (S2) ◽  
pp. 354-355
Author(s):  
J. Maser ◽  
C. Jacobsen ◽  
Y. Wang ◽  
A. Osanna ◽  
B. Winn ◽  
...  

With the steady improvement of x-ray optics with high resolution and efficiency, and continued development or adaptation of different imaging and measuring techniques, soft x-ray microscopy has emerged as a powerful method to image and analyze fully hydrated specimens of several micrometer thickness at sub-optical resolution (for a recent overview, see ref. 1). We report on experiments performed with the cryo scanning transmission x-ray microscope (cryo-STXM), which has recently come into operation at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.Cryo-STXM uses x-rays with energies between the absorption edge of Carbon (E = 284 eV) and Oxygen (E = 543 eV) from the soft x-ray undulator at the NSLS. Fully hydrated specimens such as eucaryotic cells in water or ice layers of up to 10 micrometer thickness can be imaged without any additional need for contrast enhancing techniques.


Author(s):  
Henry N. Chapman ◽  
Shawn Williams ◽  
Chris Jacobsen

In a scanning transmission x-ray microscope (STXM), such as that operated at the beamline X-lA at the National Synchrotron Light Source, it is possible to obtain dark-field images by blocking the undeviated transmitted photons so that only x rays scattered by the specimen are detected. Although the signal that is detected in dark-field is much weaker than the conventional bright-field signal the method offers much higher contrast of small features and the possibility of detecting small features with higher signal to noise for the same incident x-ray flux. Also, the signal depends on both the amplitude and phase of the specimen, rather than just the amplitude. One important application of dark-field x-ray microscopy is the imaging of gold-labelled biological specimens. This unites the advantages of x-ray microscopy (the ability of imaging thick biological objects, low radiation dose) with those of gold labelling (specific-site or specific-protien labelling, well documented protocols).The x-ray microscope consists of the scanning transmission x-ray microscope, in which a zone-plate is used to focus monochromatic x rays to a probe, through which the sample is scanned.


1998 ◽  
Vol 5 (3) ◽  
pp. 268-274 ◽  
Author(s):  
L. Strüder ◽  
C. Fiorini ◽  
E. Gatti ◽  
R. Hartmann ◽  
P. Holl ◽  
...  

For the European X-ray multi-mirror (XMM) satellite mission and the German X-ray satellite ABRIXAS, fully depleted pn-CCDs have been fabricated, enabling high-speed low-noise position-resolving X-ray spectroscopy. The detector was designed and fabricated with a homogeneously sensitive area of 36 cm2. At 150 K it has a noise of 4 e− r.m.s., with a readout time of the total focal plane array of 4 ms. The maximum count rate for single-photon counting was 105 counts s−1 under flat-field conditions. In the integration mode more than 109 counts s−1 can be detected at 6 keV. Its position resolution is of the order of 100 µm. The quantum efficiency is higher than 90% from carbon K X-rays (277 eV) up to 10 keV. New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface-generated leakage current. At count rates as high as 2 × 106 counts cm−2 s−1, they still show excellent spectroscopic behaviour at room-temperature operation in single-photon detection mode. The energy resolution at room temperature is 220 eV at 6 keV X-ray energy and 140 eV at 253 K, being achieved with Peltier coolers. These systems were operated at synchrotron light sources (ESRF, HASYLAB and NLS) as X-ray fluorescence spectrometers in scanning electron microscopes and as ultra low noise photodiodes. The operation of a multi-channel silicon drift detector system is already foreseen at synchrotron light sources for X-ray holography experiments. All systems are fabricated in planar technology having the detector and amplifiers monolithically integrated on high-resistivity silicon.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


1996 ◽  
Vol 2 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Henry N. Chapman ◽  
Jenny Fu ◽  
Chris Jacobsen ◽  
Shawn Williams

The methods of immunolabeling make visible the presence of specific antigens, proteins, genetic sequences, or functions of a cell. In this paper we present examples of imaging immunolabels in a scanning transmission x-ray microscope using the novel method of dark-field contrast. Colloidal gold, or silver-enhanced colloidal gold, is used as a label, which strongly scatters x-rays. This leads to a high-contrast dark-field image of the label and reduced radiation dose to the specimen. The x-ray images are compared with electron micrographs of the same labeled, unsectioned, whole cell. It is verified that the dark-field x-ray signal is primarily due to the label and the bright-field x-ray signal, showing absorption due to carbon, is largely unaffected by the label. The label can be well visualized even when it is embedded in or laying behind dense material, such as the cell nucleus. The resolution of the images is measured to be 60 nm, without the need for computer processing. This figure includes the x-ray microscope resolution and the accuracy of the label positioning. The technique should be particularly useful for the study of relatively thick (up to 10 μm), wet, or frozen hydrated specimens.


2008 ◽  
Vol 4 (S251) ◽  
pp. 369-370
Author(s):  
S. Pilling ◽  
D. P. P. Andrade ◽  
A. C. F. Santos ◽  
H. M. Boechat-Roberty

AbstractWe present experimental results obtained from photoionization and photodissociation processes of abundant interstellar methanol (CH3OH) as an alternative route for the production of H3+ in dense clouds. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS) employing soft X-ray and time-of-flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for the production of H3+ due to molecular dissociation of methanol by soft X-rays (C1s edge) were determined. The H3+'s photoproduction rate and column density were been estimated adopting a typical soft X-ray luminosity inside dense molecular and the observed column density of methanol. Assuming a steady state scenario, the highest column density value for the photoproduced H3+ was about 1011 cm2, which gives the ratio photoproduced/observed of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the small value, this represent a new and alternative source of H3+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.


Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.


2018 ◽  
Vol 25 (3) ◽  
pp. 878-884 ◽  
Author(s):  
Hyun-Joon Shin ◽  
Namdong Kim ◽  
Hee-Seob Kim ◽  
Wol-Woo Lee ◽  
Chae-Soon Lee ◽  
...  

A scanning transmission X-ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X-rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X-ray microscopy (STXM) setup is from ∼150 to ∼1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction-limited space resolution, ∼30 nm, is achieved in the photon energy range up to ∼850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X-ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ∼50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.


Sign in / Sign up

Export Citation Format

Share Document