Immunocytochemistry after fast freeze fixation-freeze substitution: Advantages and limits

Author(s):  
Marie-Thérèse Nicolas

An alternative to aqueous chemical fixation consists in immobilizing physically the specimen by freezing it as fast as possible without using any cryoprotectant. This Fast Freeze Fixation (FFF) followed by Freeze Substitution (FS) avoids osmotic artefacts due to the slow penetration of liquid chemical fixative. Associated with Immuno-Gold labeling (IGS), FFF-FS allows a more precise localization of antigens.Using the bioluminescent bacteria Vibrio harveyi, a comparison of IGS with an antibody directed against its luciferase (enzyme of the luminescent reaction) has been done after liquid chemical fixation versus FFFFS. This later technique, beside an expected improvement of the ultrastructure always shows a better preservation of antigenicity and a lower background. In the case of FFF-FS technique (Figure 3):–labeling in acrylic resin (LRWhite) is 2 to 4 fold more intense than in epoxy resin (Epon),–but the ultrastructure is always better in Epon.–but the ultrastructure is always better in Epon.–The addition of fixatives in the substitution medium, results in a decrease of labeling which is more important in the case of a mixture of fixatives than with osmium tetroxide alone; with one exception: the substitution with glutaraldehyde which produces a dramatic increase in the density of the labeling but also, at the same time, a swelling of the cells of about 30%.

1997 ◽  
Vol 45 (1) ◽  
pp. 119-128 ◽  
Author(s):  
G. Nicolas ◽  
F. Gaill ◽  
L. Zylberberg

Two fibrillar collagens, the worm cuticular collagen and the vertebrate Type I fish scale collagen, both organized in a compact tissue, were localized by immunogold electron microscopy in resin sections after freeze-fixation and freeze-substitution. Identification of these two fibrillar collagens failed with the-use of postembedding labeling after conventional electron microscopic processing. Positive labeling of the Type I collagen was observed in sections of fish scales freeze-fixed by either slam-freezing or high-pressure freezing, freeze-substituted in acetone with or without osmium tetroxide, and embedded in LR White. The worm cuticular collagen was detected in sections of cuticle that were freeze-fixed, freeze-substituted (necessarily with osmium tetroxide added to acetone), and embedded in either LR White or Epon. It was also detected in specimens pre-fixed by aldehydes before freeze-fixation. The Type I fish scale collagen appears to be more sensitive than the fibrillar cuticular collagen of worms to the procedures employed for postembedding immunoelectron microcopy. Our results have shown that freeze-fixation and freeze-substitution preserved the antigenicity of the fibrillar collagens organized in a compact three-dimensional network, whereas immunolabeling failed after conventional electron microscopic procedures. These cryostabilization techniques appear to be of value to improve the immunolocalization of collagens.


1989 ◽  
Vol 37 (5) ◽  
pp. 663-674 ◽  
Author(s):  
M T Nicolas ◽  
J M Bassot ◽  
G Nicolas

We studied the ultrastructural localization of luciferase on sections of the bioluminescent bacterium Vibrio harveyi by indirect immunogold staining, using a polyclonal antiluciferase antibody and the usual control tests, after chemical fixation or fast-freeze fixation (FFF) followed by different freeze-substitution (FS) procedures and embedding in either Epon or LR White. After liquid fixation with glutaraldehyde and paraformaldehyde and LR White embedding, labeling occurred over the cytoplasm but not over the condensed nucleoid. Epon embedding almost abolished it. FFF-FS considerably improved the morphological preservation and revealed cytoplasmic "patches" with a complex ultrastructure in Epon sections. The preservation was always less good in LR White. The patches were densely labeled, even in Epon sections, after FS in acetone. However, labeling intensity was 3.7 times greater in LR White than in Epon. With both resins, labeling diminished similarly when fixative agents were present in the FS medium. The localization of luciferase in the cytoplasm and particularly in the patches is discussed.


Author(s):  
W. P. Wergin ◽  
S. Roy ◽  
E. F. Erbe ◽  
C. A. Murphy ◽  
C. D. Pooley

Larvae of the nematode, Steinernema carpocapsae Weiser strain All, were cryofixed and freezesubstituted for 3 days in acetone containing 2% osmium tetroxide according to established procedures. Following chemical fixation, the nematodes were brought to room temperature, embedded in Spurr's medium and sectioned for observation with a Hitachi S-4100 field emission scanning electron microscope that was equipped with an Oxford CT 1500 Cryotrans System. Thin sections, about 80 nm thick, similar to those generally used in conventional transmission electron microscope (TEM) studies were mounted on copper grids and stained with uranyl acetate for 30 min and lead citrate for 5 min. Sections about 2 μm thick were also mounted and stained in a similar fashion. The grids were mounted on an Oxford grid holder, inserted into the microscope and onto a cryostage that was operated at ambient temperature. Thick and thin sections of the larvae were evaluated and photographed in the SEM at different accelerating voltages. Figs. 4 and 5 have undergone contrast conversion so that the images would resemble transmitted electron micrographs obtained with a TEM.


Author(s):  
C. W. Mims ◽  
E. A. Richardson

The advantages of freeze substitution fixation over conventional chemical fixation for preservation of ultrastructural details in fungi have been discussed by various authors. As most ascomycetes, basidiomycetes and deuteromycetes do not fix well using conventional chemical fixation protocols, freeze substitution has attracted the attention of many individuals interested in fungal ultrastructure. Thus far most workers using this technique on fungi have concentrated on thin walled somatic hyphae. However, in our laboratory we have experimented with the use of freeze substitution on a variety of fungal reproductive structures and spores with promising results.Here we present data on freeze substituted samples of sporangia of the zygomycete Umbellopsis vinacea, basidia of Exobasidium camelliae var. gracilis, developing teliospores of the smut Sporisorium sorghi, germinating teliospores of the rust Gymnosporangium clavipes, germinating conidia of the deuteromycete Cercosporidium personatum, and developing ascospores of Ascodesmis nigricans.Spores of G. clavipes and C. personatum were deposited on moist pieces of sterile dialysis membrane where they hydrated and germinated. Asci of A. nigricans developed on pieces of dialysis membrane lying on nutrient agar plates. U. vinacea was cultured on small pieces of agar-coated wire. In the plant pathogens E. camelliae var. gracilis and S. sorghi, a razor blade was used to remove smal1 pieces of infected host issue. All samples were plunged directly into liquid propane and processed for study according to Hoch.l Samples on dialysis membrane were flat embedded. Serial thin sections were cut using a diamond knife, collected on slot grids, and allowed to dry down onto Formvar coated aluminum racks. Sections were post stained with uranyl acetate and lead citrate.


Author(s):  
Seiji Shioda ◽  
Yasumitsu Nakai ◽  
Atsushi Ichikawa ◽  
Hidehiko Ochiai ◽  
Nobuko Naito

The ultrastructure of neurosecretory cells and glia cells in the supraoptic nucleus (SON) of the hypothalamus and the neurohypophysis (PN) was studied after rapid freezing followed by substituion fixation. Also, the ultrastructural localization of vasopressin (VP) or its carrier protein neurophys in II (NPII) in the SON and PN was demonstrated by using a post-embedding immunoco1loidal gold staining method on the tissue sections processed by rapid freezing and freeze-substitution fixation.Adult male Wistar rat hypothalamus and pituitary gland were quenched by smashing against a copper block surface precooled with liquid helium and freeze-substituted in 3% osmium tetroxide-acetone solutions kept at -80°C for 36-48h. After substituion fixation, the tissue blocks were warmed up to room temperature, washed in acetone and then embedded in an Epon-Araldite mixture. Ultrathin sections mounted on 200 mesh nickel grids were immersed in saturated sodium metaperiodate and then incubated in each of the following solutions: 1 % egg albumin in phosphate buffer, VP or NPII (1/1000-1/5000) antiserum 24h at 4°C, 3) colloidal gold solution (1/20) 1h at 20°C. The sections were washed with distilled waterand dried, then stained with uranylacetate and lead citrate and examined with Hitachi HU-12A and H-800 electron microscopes.


Author(s):  
S. A. Livesey ◽  
A. A. del Campo ◽  
E. S. Griffey ◽  
D. Ohlmer ◽  
T. Schifani ◽  
...  

The aim of this study is to compare methods of sample preparation for elemental analysis. The model system which is used is the human erythrocyte. Energy dispersive spectroscopic analysis has been previously reported for cryofixed and cryosectioned erythrocytes. Such work represents the reference point for this study. The use of plastic embedded samples for elemental analysis has also been documented. The work which is presented here is based on human erythrocytes which have been either chemically fixed and embedded or cryofixed and subsequently processed by a variety of techniques which culminated in plastic embedded samples.Heparinized and washed erythrocytes were prepared by the following methods for this study :(1). Chemical fixation in 4% paraformaldehyde/0.25% glutaraldehyde/0.2 M sucrose in 0.1 M Na cacodylate, pH 7.3 for 30 min, followed by ethanol dehydration, infiltration and embedding in Lowicryl K4M at -20° C.


Author(s):  
Dean A. Handley ◽  
Lanping A. Sung ◽  
Shu Chien

RBC agglutination by lectins represents an interactive balance between the attractive (bridging) force due to lectin binding on cell surfaces and disaggregating forces, such as membrane stiffness and electrostatic charge repulsion (1). During agglutination, critical geometric parameters of cell contour and intercellular distance reflect the magnitude of these interactive forces and the size of the bridging macromolecule (2). Valid ultrastructural measurements of these geometric parameters from agglutinated RBC's require preservation with minimal cell distortion. As chemical fixation may adversely influence RBC geometric properties (3), we used chemical fixation and cryofixation (rapid freezing followed by freeze-substitution) as a comparative approach to examine these parameters from RBC agglutinated with Ulex I lectin.


2010 ◽  
Vol 174 ◽  
pp. 405-408 ◽  
Author(s):  
Bao Lin Tang ◽  
Guang Xue Chen ◽  
Qi Feng Chen ◽  
Jing Lei Tai

Printing electronics technology promotes the application of conductive ink. In this paper, the manufacture of nano-sliver conductive ink is investigated. First, Spherical silver nano-particles were reduced from silver nitrate solution by liquid chemical reduction method, with hydrazine hydrate as reductant and PVP as surface-protection reagent. SEM was used to characterize the morphology of silver powders, and the mean particles size is 62.79 nm. Then, conductive ink was prepared with nano-silver particles made in this research as conductive fillers, polyurethane resin and acrylic resin as binders, and stearic acid as dispersant. In the last, the conductive ink was printed on the PCB substrate by screening printing. After the ink is dried, conductivity, abrasion resistance, and adhesion were tested. The experiment results shows that the order of sheet resistivity magnitude is 10-4Ω•m, the number of rubbing fastness is more than 6000, and the adhesion can be resisted repeatedly to tape tear.


1995 ◽  
Vol 43 (4) ◽  
pp. 421-427 ◽  
Author(s):  
R D Young ◽  
P A Lawrence ◽  
V C Duance ◽  
T Aigner ◽  
P Monaghan

We localized Type III collagen by immunogold electron microscopy in resin sections of intact normal and osteoarthritic human articular cartilage. Comparisons of antibody staining between tissue prepared by high-pressure cryofixation and freeze-substitution without fixatives and that exposed to conventional mild chemical fixation with paraformaldehyde showed that dedicated cryotechniques yielded superior preservation of epitopes that are modified by chemical fixation, and simultaneously provided good ultrastructural preservation. Type III collagen was detected with two polyclonal antibodies, one against the triple-helical domain of the molecule and a second against the more antigenic, globular amino pro-peptide domain, which in this collagen is retained in the extracellular matrix after secretion. Positive labeling was seen in association with the major interstitial fibrils, suggesting co-polymerization of Types III and II collagen in cartilage. Type III collagen could not be detected in aldehyde-fixed normal cartilage. In fixed osteoarthritic cartilage, Type III was detectable only when the antibody to the amino pro-peptide was employed. In contrast, high-pressure cryofixation and freeze-substitution preserved epitopes for both antibodies, permitting immunodetection of Type III collagen in normal and osteoarthritic cartilage. Cryotechniques offer exciting possibilities for significantly improving the immunolocalization of collagens and other fixative-sensitive antigens in situ.


Sign in / Sign up

Export Citation Format

Share Document