Interlaboratory Study of K Factor Determination by Asbestos-Analysis Laboratories

Author(s):  
S. Turner ◽  
E.B. Steel ◽  
O.S. Crankshaw

The National Voluntary Laboratory Accreditation Program (NVLAP) of the National Institute of Standards and Technology (NIST) has been accrediting laboratories for the analysis of asbestos by transmission electron microscopy since 1990. As part of the quality assurance procedures for the program, laboratories are required to determine k factors for Na, Mg, Si, Al, Ca and Fe. An interlaboratory study has been conducted by NIST and the Research Triangle Institute (RTI) in which laboratories analyzed thin film standards SRM 2063 or SRM 2063a. This work reports results of initial analysis of the data.

Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


1996 ◽  
Vol 452 ◽  
Author(s):  
U. Klement ◽  
D. Horst ◽  
F. Ernst

AbstractThe objective of this work is to find a material to replace amorphous hydrogenated silicon used as photosensitive part in the “retina” of an “electronic eye”. For that reason, ZnS, ZnSe, CdS and CdSe were chosen for investigations. Thin films, prepared by chemical vapour deposition, were characterized by transmission electron microscopy. The observed microstructures were correlated with the optoelectronic properties of these materials. CdSe was found to be the most promising material for our application. Hence, the influence of a dielectric interlayer and the effects of additional annealing treatments were analyzed for CdSe and will be discussed with respect to the optimization of the material.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1958-1959
Author(s):  
L. Fang ◽  
P. Ricou ◽  
R. Korotkov

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1997 ◽  
Vol 3 (S2) ◽  
pp. 521-522
Author(s):  
A.F. Marshall ◽  
L. Klein ◽  
J.S. Dodge ◽  
C.H. Ahn ◽  
J.W. Reiner ◽  
...  

SrRuO3 is a low temperature ferromagnet (Tc ≌ 150K) which has recently been investigated in thin film form due to its structural compatibility with other thin film perovskites materials of practical interest, including high-temperature superconductors. Magnetization studies of thin films of SrRuO3 deposited on cubic SrTiO3 indicate strong uniaxial anisotropy with the easy direction approximately along either the a or b axis, which are difficult to distinguish. The orthorhombic structure of SrRuO3 (a = 5.53, b = 5.57, c = 7.84 Å) has six symmetry-related orientations on the cubic substrate (a = 3.9Å). Using Lorentz transmission electron microscopy both the magnetic and the crystallographic domain microstructure are characterized.For TEM imaging the films are readily removed from the substrate by chemical etching, using a HF:HNO3:H2O etch of approximately 1:1:1 dilution. Free-floating SrRuO3 films of 300-1000Å in thickness are then supported on standard carbon/formvar films on Cu substrates.


Sign in / Sign up

Export Citation Format

Share Document