Statistical Tomography of 3D Thin Film Structure using Transmission Electron Microscopy

Author(s):  
E. Spiecker ◽  
V. Radmilovic ◽  
U. Dahmen
1994 ◽  
Vol 357 ◽  
Author(s):  
James E. Angelo ◽  
N.R. Moody ◽  
S.K. Venkataraman ◽  
W.W. Gerberich

AbstractThe microstructure of Ta2N thin films deposited by d.c. magnetron sputtering on (1120) surface of Al2O3 is investigated using transmission electron microscopy. The effects of exposing the thin film structure to a 600°C air environment are also explored. It will be shown that under the standard deposition conditions, stresses exist in the thin film structure which leads to the formation of a textured structure in the as-deposited Ta2N. Exposure of the thin film structure to an air environment transforms the Ta2N to Ta2O5 in the orthorhombic structure. In addition, evidence for a epitaxial relationship between the Ta2O5 and Al2O3 will be presented.


1989 ◽  
Vol 4 (4) ◽  
pp. 755-758 ◽  
Author(s):  
J. Yahalom ◽  
D. F. Tessier ◽  
R. S. Timsit ◽  
A. M. Rosenfeld ◽  
D. F. Mitchell ◽  
...  

Copper/nickel multilayered thin-films prepared by electrodeposition have been examined in cross section by electron energy loss spectroscopy and high-resolution transmission electron microscopy. The results of the examinations provide the first direct experimental evidence of the large composition modulation across successive layers in the thin-film structure and the coherent nature of Cu/Ni interfaces.


2008 ◽  
Vol 1071 ◽  
Author(s):  
Hongjin Fan ◽  
S. Kawasaki ◽  
J. M. Gregg ◽  
A. Langner ◽  
T. Leedham ◽  
...  

AbstractTrilayer concentric metallic-piezoelectric-metallic microtubes are fabricated by infiltrating porous Si templates with sol precursors. LaNiO3 (LNO) is used as the inner and outer electrode material and PbZrTiO3 (PZT) is the middle piezoelectric layer. Structure of the microtubes is characterized in details using scanning and transmission electron microscopy which are equipped with energy dispersive X-ray spectroscopy for elemental mapping. The hysteresis of a trilayered thin film structure of LNO-PZT-LNO is shown. This trilayered tubes might find applications in inkjet printing.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


1986 ◽  
Vol 64 (10) ◽  
pp. 1369-1373 ◽  
Author(s):  
U. von Sacken ◽  
D. E. Brodie

The structure of polycrystalline Zn3P2 films has been studied for 1- to 2-μm-thick vacuum-deposited films on glass substrates. Transmission electron microscopy and X-ray diffraction techniques have been used to obtain a detailed, quantitative analysis of the film structure. The initial growth consists of small (≤ 10 nm), randomly oriented grains. As the film thickness increases, the growth of crystallites with the {220} planes oriented approximately parallel to the substrate is favoured, and a columnar structure develops along with a highly preferred orientation. This structure has been observed directly by transmission electron microscopy of thin cross sections of the films. The size of the grains at the free surface increases with the film thickness, reaching approximately 200–300 nm when the film is 1 μm thick. The effects of substrate temperature and low-energy (0.5–2 keV) electron bombardment of the film during growth have also been studied. Neither substrate temperature nor electron bombardment appear to have a major effect on the film structure. The primary effect of electron bombardment appears to be the creation of preferred nucleation sites on the substrate.


1996 ◽  
Vol 452 ◽  
Author(s):  
U. Klement ◽  
D. Horst ◽  
F. Ernst

AbstractThe objective of this work is to find a material to replace amorphous hydrogenated silicon used as photosensitive part in the “retina” of an “electronic eye”. For that reason, ZnS, ZnSe, CdS and CdSe were chosen for investigations. Thin films, prepared by chemical vapour deposition, were characterized by transmission electron microscopy. The observed microstructures were correlated with the optoelectronic properties of these materials. CdSe was found to be the most promising material for our application. Hence, the influence of a dielectric interlayer and the effects of additional annealing treatments were analyzed for CdSe and will be discussed with respect to the optimization of the material.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1958-1959
Author(s):  
L. Fang ◽  
P. Ricou ◽  
R. Korotkov

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Sign in / Sign up

Export Citation Format

Share Document