The structure of zeolite LZ-277

Author(s):  
C. A. Bateman ◽  
R. M. Kirchner

LZ-277 is a new aluminosilicate molecular sieve. It has an x-ray diffraction (XRD) pattern nearly identical to zeolite phi but with a much smaller pore size. Whether LZ-277 and phi-like materials are intergrowths or a physical mixture of phases has been a matter of debate. The ability to determine the structure of complex zeolites has been enhanced by HREM and, more recently, by the ability to simulate XRD patterns of faulted materials. In this study, the structure of zeolite LZ-277 is reported and confirmed by simulating the XRD pattern of this highly faulted material.The low magnification micrograph shows the faulted and intergrown disc morphology typical of this material (Figure 1). The faulting is most typically twinning on (001), and is shown in the [010] diffraction pattern (Figure 2). The pattern is indexed on an a = 1.38 nm, c = 1.50 nm unit cell and both lattice parameters and systematic absences are consistent with chabazite in space group Rm.

2010 ◽  
Vol 25 (1) ◽  
pp. 72-74 ◽  
Author(s):  
H. A. Camargo ◽  
J. A. Henao ◽  
D. F. Amado ◽  
V. V. Kouznetsov

1-N-(4-pyridylmethyl)amino naphtalene was synthesized by means of a reaction of alpha-naphthylamine, 4-pyridylcarboxyaldehyde, in anhydrous ethanol to obtainN-(4-pyridylen)-alpha-naphthylamine and that was reduced with NaBH4 to produce the wanted compound. The X-ray powder diffraction pattern for the new compound 1-N-(4-pyrydylmethyl)amino naphtalene was obtained. This compound crystallizes in a monoclinic system with refined unit cell parameters a=10.375(5) Å, b=17.665(6) Å, c=5.566(2) Å, β=100.11(3), and V=1004.3(5) Å3, with space group P2/m (No. 10).


Author(s):  
Fang Lu ◽  
Bei Zhang ◽  
Yong Liu ◽  
Ying Song ◽  
Gangxing Guo ◽  
...  

Phytases are phosphatases that hydrolyze phytates to less phosphorylatedmyo-inositol derivatives and inorganic phosphate. β-Propeller phytases, which are very diverse phytases with improved thermostability that are active at neutral and alkaline pH and have absolute substrate specificity, are ideal substitutes for other commercial phytases. PhyH-DI, a β-propeller phytase fromBacillussp. HJB17, was found to act synergistically with other single-domain phytases and can increase their efficiency in the hydrolysis of phytate. Crystals of native and selenomethionine-substituted PhyH-DI were obtained using the vapour-diffusion method in a condition consisting of 0.2 Msodium chloride, 0.1 MTris pH 8.5, 25%(w/v) PEG 3350 at 289 K. X-ray diffraction data were collected to 3.00 and 2.70 Å resolution, respectively, at 100 K. Native PhyH-DI crystals belonged to space groupC121, with unit-cell parametersa = 156.84,b = 45.54,c = 97.64 Å, α = 90.00, β = 125.86, γ = 90.00°. The asymmetric unit contained two molecules of PhyH-DI, with a corresponding Matthews coefficient of 2.17 Å3 Da−1and a solvent content of 43.26%. Crystals of selenomethionine-substituted PhyH-DI belonged to space groupC2221, with unit-cell parametersa = 94.71,b= 97.03,c= 69.16 Å, α = β = γ = 90.00°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.44 Å3 Da−1and a solvent content of 49.64%. Initial phases for PhyH-DI were obtained from SeMet SAD data sets. These data will be useful for further studies of the structure–function relationship of PhyH-DI.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


1980 ◽  
Vol 35 (5) ◽  
pp. 522-525 ◽  
Author(s):  
Gisela Beindorf ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

The complexes AsPh4[Cl4V = N-Cl] and AsPh4[VOCl4] are prepared by the reaction of AsPh4Cl with Cl3VNCl and VOCl3, respectively. The IR spectra indicate C4v symmetry for the complex anions with multiple VN and VO bonds and a linear arrangement for the VNCl-group. AsPh4[VOCl4] crystallizes in the tetragonal space group P4/n with two formula units in the unit cell. The crystal structure was solved by X-ray diffraction methods (R = 0,062, 1096 observed, independent reflexions). The structure consists of AsPh4+ cations and [VOCl4]- anions with symmetry C4v. The extremely short VO bond length corresponds with a VO triple; its steric requirements cause the relatively large bond angle OVCl of 103.4°.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


2020 ◽  
Vol 105 (3) ◽  
pp. 353-362
Author(s):  
Katarzyna Luberda-Durnaś ◽  
Marek Szczerba ◽  
Małgorzata Lempart ◽  
Zuzanna Ciesielska ◽  
Arkadiusz Derkowski

Abstract The primary aim of this study was the accurate determination of unit-cell parameters and description of disorder in chlorites with semi-random stacking using common X-ray diffraction (XRD) data for bulk powder samples. In the case of ordered chlorite structures, comprehensive crystallographic information can be obtained based on powder XRD data. Problems arise for samples with semi-random stacking, where due to strong broadening of hkl peaks with k ≠ 3n, the determination of unit-cell parameters is demanding. In this study a complete set of information about the stacking sequences in chlorite structures was determined based on XRD pattern simulation, which included determining a fraction of layers shifted by ±1/3b, interstratification with different polytypes and 2:1 layer rotations. A carefully selected series of pure Mg-Fe tri-trioctahedral chlorites with iron content in the range from 0.1 to 3.9 atoms per half formula unit cell was used in the study. In addition, powder XRD patterns were carefully investigated for the broadening of the odd-number basal reflections to determine interstratification of 14 and 7 Å layers. These type of interstratifications were finally not found in any of the samples. This result was also confirmed by the XRD pattern simulations, assuming interstratification with R0 ordering. Based on h0l XRD reflections, all the studied chlorites were found to be the IIbb polytype with a monoclinic-shaped unit cell (β ≈ 97°). For three samples, the hkl reflections with k ≠ 3n were partially resolvable; therefore, a conventional indexing procedure was applied. Two of the chlorites were found to have a monoclinic cell (with α, γ = 90°). Nevertheless, among all the samples, the more general triclinic (pseudomonoclinic) crystal system with symmetry C1 was assumed, to calculate unit-cell parameters using Le Bail fitting. A detailed study of semi-random stacking sequences shows that simple consideration of the proportion of IIb-2 and IIb-4/6 polytypes, assuming equal content of IIb-4 and IIb-6, is not sufficient to fully model the stacking structure in chlorites. Several, more general, possible models were therefore considered. In the first approach, a parameter describing a shift into one of the ±1/3b directions (thus, the proportion of IIb-4 and IIb-6 polytypes) was refined. In the second approach, for samples with slightly distinguishable hkl reflections with k ≠ 3n, some kind of segregation of individual polytypes (IIb-2/4/6) was considered. In the third approach, a model with rotations of 2:1 layers about 0°, 120°, 240° was shown to have the lowest number of parameters to be optimized and therefore give the most reliable fits. In all of the studied samples, interstratification of different polytypes was revealed with the fraction of polytypes being different than IIbb ranging from 5 to 19%, as confirmed by fitting of h0l XRD reflections.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


2003 ◽  
Vol 18 (1) ◽  
pp. 47-49
Author(s):  
J. C. Poveda ◽  
J. A. Henao ◽  
J. A. Pinilla ◽  
V. V. Kouznetsov ◽  
C. Ochoa

The X-ray powder diffraction pattern for a bridgehead heterocyclic system was determined. 2-exo-(β-pyridyl)-6-exo-phenyl-7-oxa-1-azabicyclo[2.2.1]heptane, C16H16N2O, is triclinic with refined unit cell parameters a=1.1012(2), b=1.3950(2), c=1.0074(3) nm, α=111.09(2)°, β=104.97(2)°, γ=77.38(2)°, V=1.3813(3) nm3, Z=4, and Dx=1.212 g/cm3 with space group P-1 (No. 2).


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


Sign in / Sign up

Export Citation Format

Share Document