The influence of supporting grid bars on the temperatore increase of a thin fiim subjected to electron irradiation

Author(s):  
A.E. Curzon

The heating effect of an incident electron beam may cause a material to be radiation-sensitive. For example, the adsorption behaviour of inert gases on graphite observed in a transmission electron microscope depends critically on the temperature of the substrate. Early consideration of beam heating dealt with a circular film illuminated at the centre by an electron beam of circular cross-section. In practice, however, the film is often supported across a square aperture and is not centrally illuminated. It has recently been shown that the method of images may be used to solve the problem of the heating of a square film of thermal conductivity k by a beam whose cross-section is entirely within the film. This solution has the advantage that it applies regardless of where the incident electron beam strikes the film. The general solution involves an infinite sum over a two dimensional lattice of heat sources and sinks. Though the sum is readily evaluated by means of a computer, it is helpful to consider a particular limiting case which is readily understood in terms of three images and the main beam. This case is illustrated in Figure 1.

Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


Author(s):  
M. A. Parker ◽  
R. Sinclair

Observations of defect motion by high resolution transmission electron microscopy (HRTEM) are rare. Unfortunately, the application of this technique has been limited to a few unique materials, those that can obtain sufficient thermal energy for the initiation of atomic motion through the heating effects of the incident electron beam. In earlier work, it was speculated that events such as the motion of crystal defects, observed in cadmium telluride (CdTe) with the electron beam heating method, might become evident in materials such as silicon (Si) if only sufficiently high temperatures could be achieved (∼ 600°C) in-situ.A silicon specimen with a suitable population of defects was chosen for examination; it consisted of a cross-section of.3 μ ﹛100﹜ silicon on ﹛1102﹜ sapphire (SOS from Union Carbide) which was implant amorphized by 28Si+ ion implantation at an energy of ∼ 170keV.


Author(s):  
Nan Yao ◽  
J. M. Cowley

The RHEED (Reflection High Energy Electron Diffraction) patterns as essential indications of the diffraction conditions in relation to REM (Reflection Electron Microscopy) imaging provide a wealth of information about the surfaces. They contain extensive patterns of Kikuchi lines, bands and envelopes resulting from diffuse inelastic scattering processes. They also contain arrays of diffuse spots forbidden by the boundary conditions for elastic scattering but generated by multiple diffuse scattering processes.However, a word of caution has to be sounded. Strictly speaking, the normal RHEED pattern does not exactly present the diffraction condition for REM imaging in a commercial transmission electron microscope. Practical and theoretical studies of the electron optics of the illuminating system on a Philip-400T transmission electron microscope, in which the specimen is immersed in the magnetic field of the twin objective lens, indicate that the convergent angle of the incident electron beam can be adjusted precisely, in a range from about 0.1 mrad to 5 mrad, with a selection of the second condenser aperture size, by adjusting the excitation current in the second condenser lens. For the best contrast and illumination, the RHEED pattern is generally obtained by focusing the electron beam on the surface with the maximum convergence angle, and the REM image is obtained with an almost parallel illumination with the minimum convergence angle. A typical example obtained from a fresh cleavage (110) surface of InP single crystal is demonstrated in figure 1, in which (a) and (b) are RHEED patterns with the (10,10,0) specular Bragg-reflection condition fulfilled and correspond to the incident electron beam with 2 mrad and 0.2 mrad convergence angles, respectively; (c) is a REM image obtained under exactly the same operation condition as (b) except for changing from diffraction mode to image mode, which indeed has nothing to do with the illumination condition above the specimen position; and (c) is taken from an area consisting of many steps of atomic height. Comparison of (a) and (b) shows that, for the parallel electron illumination, only those diffraction spots are dominant which represent the possible diffracted directions and mark the intersections of Ewald sphere with reciprocal lattice rods of the crystal surface. The extensive Kikuchi lines, bands and envelopes, and even the parabolas appearing in (a), are scarcely visible in (b). This suggests that the channeling effects characterized as the appearance of surface diffraction parabolas showing in RHEED pattern are mainly caused by the portion of electrons with incident direction slightly deviated from the rows of atoms; that is, the inelastically scattered electrons propagating in the directions of rows of atoms only occur when the initial incident electrons interact with the lattice in a direction slightly different from that of the rows of atoms. Following this argument, we may propose that the contrasts observed in REM image are mostly contributed from the diffraction and phase contrasts.


Vacuum ◽  
1976 ◽  
Vol 26 (10-11) ◽  
pp. 421
Author(s):  
J.P. Coad ◽  
M. Gettings ◽  
J.C. Rivière

2005 ◽  
Vol 76 ◽  
pp. S152
Author(s):  
B. De Smedt ◽  
N. Reynaert ◽  
F. Flachet ◽  
M. Coghe ◽  
L. Paelinck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document