Ferroic phase transition in LaEr(MoO4)3

2013 ◽  
Vol 28 (S2) ◽  
pp. S86-S93
Author(s):  
A. Hernández-Suárez ◽  
C. Guzmán-Afonso ◽  
J. López-Solano ◽  
C. González-Silgo ◽  
M. E. Torres ◽  
...  

The ferroic phase transition in LaEr(MoO4)3 has been analyzed for the first time. It has been confirmed that this compound undergoes a phase transition from a tetragonal system (paraelectric-paraelastic phase), with space group P-421m [β-Gd2(MoO4)3 averaged phase] to an orthorhombic system (ferroelectric-ferroelastic phase), with space group Pba2 [β'-Gd2(MoO4)3 phase] in a reversible process. This phenomenon, together with the observed demixing at high temperature has been studied using different techniques. LaEr(MoO4)3 samples have been obtained by the conventional solid-state synthesis. The thermal dependence of the crystal structure was studied by powder X-ray and neutron diffraction, following a new refining procedure in which the symmetry modes of atomic displacements from the paraelectric-paraelastic structure were analyzed. Dielectric spectroscopy measurements have confirmed the structural results, showing a very smooth phase transition. Finally, calculations within the framework of Density Functional Theory show a behavior of the lattice parameters similar to that observed in our experiments.

2012 ◽  
Vol 20 (1) ◽  
pp. 166-171
Author(s):  
Vasil Koteski ◽  
Jelena Belošević-Čavor ◽  
Petro Fochuk ◽  
Heinz-Eberhard Mahnke

The lattice relaxation around Ga in CdTe is investigated by means of extended X-ray absorption spectroscopy (EXAFS) and density functional theory (DFT) calculations using the linear augmented plane waves plus local orbitals (LAPW+lo) method. In addition to the substitutional position, the calculations are performed for DX- and A-centers of Ga in CdTe. The results of the calculations are in good agreement with the experimental data, as obtained from EXAFS and X-ray absorption near-edge structure (XANES). They allow the experimental identification of several defect structures in CdTe. In particular, direct experimental evidence for the existence of DX-centers in CdTe is provided, and for the first time the local bond lengths of this defect are measured directly.


IUCrJ ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 497-509 ◽  
Author(s):  
Paul Benjamin Klar ◽  
Iñigo Etxebarria ◽  
Gotzon Madariaga

Synchrotron single-crystal X-ray diffraction has revealed diffuse scattering alongside sharp satellite reflections for different samples of mullite (Al4+2xSi2−2xO10−x). Structural models have been developed in (3+1)-dimensional superspace that account for vacancy ordering and Al/Si ordering based on harmonic modulation functions. A constraint scheme is presented which explains the crystal-chemical relationships between the split sites of the average structure. The modulation amplitudes of the refinements differ significantly by a factor of ∼3, which is explained in terms of different degrees of ordering,i.e.vacancies follow the same ordering principle in all samples but to different extents. A new approach is applied for the first time to determine Al/Si ordering by combining density functional theory with the modulated volumes of the tetrahedra. The presence of Si–Si diclusters indicates that the mineral classification of mullite needs to be reviewed. A description of the crystal structure of mullite must consider both the chemical composition and the degree of ordering. This is of particular importance for applications such as advanced ceramics, because the physical properties depend on the intrinsic structure of mullite.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 643 ◽  
Author(s):  
Javier Gonzalez-Platas ◽  
Placida Rodriguez-Hernandez ◽  
Alfonso Muñoz ◽  
U. R. Rodríguez-Mendoza ◽  
Gwilherm Nénert ◽  
...  

Synthetic chalcomenite-type cupric selenite CuSeO3∙2H2O has been studied at room temperature under compression up to pressures of 8 GPa by means of single-crystal X-ray diffraction, Raman spectroscopy, and density-functional theory. According to X-ray diffraction, the orthorhombic phase undergoes an isostructural phase transition at 4.0(5) GPa with the thermodynamic character being first-order. This conclusion is supported by Raman spectroscopy studies that have detected the phase transition at 4.5(2) GPa and by the first-principles computing simulations. The structure solution at different pressures has provided information on the change with pressure of unit–cell parameters as well as on the bond and polyhedral compressibility. A Birch–Murnaghan equation of state has been fitted to the unit–cell volume data. We found that chalcomenite is highly compressible with a bulk modulus of 42–49 GPa. The possible mechanism driving changes in the crystal structure is discussed, being the behavior of CuSeO3∙2H2O mainly dominated by the large compressibility of the coordination polyhedron of Cu. On top of that, an assignation of Raman modes is proposed based upon density-functional theory and the pressure dependence of Raman modes discussed. Finally, the pressure dependence of phonon frequencies experimentally determined is also reported.


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 464 ◽  
Author(s):  
Hebboul ◽  
Galez ◽  
Benbertal ◽  
Beauquis ◽  
Mugnier ◽  
...  

Synthesis and characterization of anhydrous LiZn(IO3)3 powders prepared from an aqueous solution are reported. Morphological and compositional analyses were carried out by using scanning electron microscopy and energy-dispersive X-ray measurements. The synthesized powders exhibited a needle-like morphology after annealing at 400 °C. A crystal structure for the synthesized compound was proposed from powder X-ray diffraction and density-functional theory calculations. Rietveld refinements led to a monoclinic structure, which can be described with space group P21, number 4, and unit-cell parameters a = 21.874(9) Å, b = 5.171(2) Å, c = 5.433(2) Å, and  = 120.93(4)°. Density-functional theory calculations supported the same crystal structure. Infrared spectra were also collected, and the vibrations associated with the different modes were discussed. The non-centrosymmetric space group determined for this new polymorph of LiZn(IO3)3, the characteristics of its infrared absorption spectrum, and the observed second-harmonic generation suggest it is a promising infrared non-linear optical material.


1999 ◽  
Vol 06 (06) ◽  
pp. 1045-1051 ◽  
Author(s):  
YOSHIHIDE YOSHIMOTO ◽  
YOSHIMICHI NAKAMURA ◽  
HIROSHI KAWAI ◽  
MASARU TSUKADA ◽  
MASATOSHI NAKAYAMA

The problem of relative energetic stabilities of the high order reconstructions of the Ge(001) surface is revisited by a more refined first-principles calculation based on density functional theory. Using this result, we performed a Monte Carlo simulation of the phase transition, and obtained 315 K as the transition temperature of p(2× 1) → c(4× 2). This reproduces fairly well the transient temperature (250–350 K) observed by an X-ray diffraction experiment. The obtained geometry of the c(4× 2) structure compares well with an X-ray diffraction experiment. The potential energy curves of flip-flop motions of both single dimer and dimer in type-P defect are also obtained.


2016 ◽  
Vol 94 (16) ◽  
Author(s):  
Hitoshi Yamaoka ◽  
Yoshiya Yamamoto ◽  
Eike F. Schwier ◽  
Naohito Tsujii ◽  
Masahiro Yoshida ◽  
...  

2018 ◽  
Vol 74 (12) ◽  
pp. 1750-1758
Author(s):  
Bing Wang ◽  
Qi Fang

Three 1-phenylindolin-2-one derivatives, namely 6-chloro-1-phenylindolin-2-one (A), 4-chloro-1-phenylindolin-2-one (B) and 1-(3-chlorophenyl)indolin-2-one (C), all C14H10ClNO, have been synthesized and the structures of these compounds at room temperature (A RT, B RT and C RT) and low temperature (A LT, B LT and C LT) have been determined. Crystal A at 295 K (A RT) crystallized in the monoclinic space group P21/c and the phenyl ring of the unique molecule exhibits disorder over two positions. At low temperature, the disorder disappeared and crystal A at 90 K (A LT) crystallized in the triclinic space group P\overline{1} with a doubled unit-cell volume and four molecules in the asymmetric unit. Density functional theory (DFT) calculations revealed a low oscillation barrier (0.24 kcal mol−1) of the phenyl ring of molecule A and the phase transition from the P21/c structure to the P\overline{1} structure can be interpreted in terms of the freezing out of the two conformations at low temperature. Crystal B retains space group P21/c in the temperature range from 100 to 297 K. A kind of obtuse-cell to acute-cell change can be recognized; if the unit cell of B LT at 100 K is set to be a standard obtuse cell [β = 90.341 (2)°] and the cell is kept untransformed in the course of temperature changing, the cell of B RT at 297 K was found to be acute [β = 89.288 (2)°]. The molecules in structure C are packed in layers, with C—H...O hydrogen bonds between neighbouring layers.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Veton Haziri ◽  
Sereilakhena Phal ◽  
Jean-François Boily ◽  
Avni Berisha ◽  
Solomon Tesfalidet

Surface modification is a hot topic in electrochemistry and material sciences because it affects the way materials are used. In this paper, a method for covalently attaching carboxyphenyl (PhCOOH) groups to a gold electrode is presented. These groups were grafted onto the electrode surface electrochemically via reduction of aryldiazonium salt. The resulting grafted surface was characterized using cyclic voltammetry (CV) before and after the functionalization procedure to validate the presence of the grafted layer. The grafting of PhCOOH groups was confirmed by analyzing electrode thickness and composition by ellipsometry and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations indicated that the grafted layers provide a stable platform and resolved, for the first time, their interactions with oxygen.


Sign in / Sign up

Export Citation Format

Share Document