Some further considerations in powder diffraction pattern indexing with the dichotomy method

2014 ◽  
Vol 29 (S2) ◽  
pp. S7-S12 ◽  
Author(s):  
Daniel Louër ◽  
Ali Boultif

Some improvements have been introduced in the current computer program for powder diffraction pattern indexing using the dichotomy algorithm. The resulting version, DICVOL14, includes optimizations and extension of scanning limits for triclinic cases, a detailed review of the input data from the indexing solutions, cell centering tests and a new approach for zero-point offset evaluation. The performance of the new version is illustrated with many examples, such as triclinic cases with long axes and dominant zones. Some important parameters in pattern indexing based on the dichotomy algorithm are commented upon, e.g. the precision of data and spurious lines.

2008 ◽  
Vol 41 (4) ◽  
pp. 815-817 ◽  
Author(s):  
Angela Altomare ◽  
Corrado Cuocci ◽  
Carmelo Giacovazzo ◽  
Anna Moliterni ◽  
Rosanna Rizzi

QUALXis a new computer program for phase identification using powder diffraction data. It uses the Powder Diffraction File database, where a search for the phase best matching the experimental powder diffraction pattern is carried out. The program is characterized by a high level of automation: the traditional steps aimed at interpreting the experimental pattern before the search (background estimation, peak search, peak intensity evaluation) are executed automatically. The search may be carried outviaconstraints on compound name and/or chemical elements. In addition, several graphical options requested interactively enable the user to perform zero point correction evaluation,Kα2stripping and smoothing. The program, written in Fortran95 and C++, runs on PCs under the Windows XP operating system. It is supported by a very effective graphical interface.


2004 ◽  
Vol 37 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Christopher J. Gilmore ◽  
Gordon Barr ◽  
Jonathan Paisley

A new integrated approach to full powder diffraction pattern analysis is described. This new approach incorporates wavelet-based data pre-processing, non-parametric statistical tests for full-pattern matching, and singular value decomposition to extract quantitative phase information from mixtures. Every measured data point is used in both qualitative and quantitative analyses. The success of this new integrated approach is demonstrated through examples using several test data sets. The methods are incorporated within the commercial software programSNAP-1D, and can be extended to high-throughput powder diffraction experiments.


2013 ◽  
Vol 77 (1) ◽  
pp. 93-105 ◽  
Author(s):  
I. Kusachi ◽  
S. Kobayashi ◽  
Y. Takechi ◽  
Y. Nakamuta ◽  
T. Nagase ◽  
...  

AbstractShimazakiite occurs as greyish white aggregates up to 3 mm in diameter. Two polytypes, shimazakiite-4M and shimazakiite-4O, have been identified, the former in nanometre-sized twin lamellae and the latter in micrometre-sized lamellae. Shimazakiite was discovered in an irregular vein in crystalline limestone near gehlenite-spurrite skarns at Fuka mine, Okayama Prefecture, Japan. Associated minerals include takedaite, sibirskite, olshanskyite, parasibirskite, nifontovite, calcite and an uncharacterized hydrous calcium borate. The mineral is biaxial (–), with the following refractive indices (at 589 nm): α = 1.586(2), β = 1.650(2), γ = 1.667(2) and 2Vcalc = 53º [shimazakiite-4M]; and α = 1.584(2), β = 1.648(2), γ = 1.670(2) and 2Vcalc = 54.88º [shimazakiite-4O]. Quantitative electronmicroprobe analyses (means of 28 and 25 determinations) gave the empirical formulae Ca2B1.92O4.76(OH)0.24 and Ca2B1.92O4.76(OH)0.24 for shimazakiite-4M and shimazakiite-4O, respectively. The crystal structure refinements: P21/c, a = 3.5485(12), b = 6.352(2), c = 19.254(6) Å , β = 92.393(13)°, V = 433.6(3) Å3 [for shimazakiite-4M]; and P212121, a = 3.55645(8), b = 6.35194(15), c = 19.2534(5) Å , V = 434.941(18) Å3[for shimazakiite-4O], converged into R1 indices of 0.1273 and 0.0142, respectively. The crystal structure of shimazakiite consists of a layer containing B2O5 units (two near-coplanar triangular corner-sharing BO3 groups) and 6- and 7-coordinate Ca atoms. Different sequences in the c direction of four layers are observed in the polytypes. The five strongest lines in the powder-diffraction pattern [listed as d in Å (I)(hkl)] are: 3.02(84)(022); 2.92(100)(10) 2.81(56)(104); 2.76(32)(113); 1.880(32)(11,12,126,118) [for shimazakiite-4M]; and 3.84(33)(014); 3.02(42)(022); 2.86(100)(104); 2.79(29)(113); 1.903(44)(126,118) [for shimazakiite-4O].


1973 ◽  
Vol 95 (2) ◽  
pp. 629-635 ◽  
Author(s):  
D. A. Smith ◽  
M. A. Chace ◽  
A. C. Rubens

This paper presents a detailed explanation of a technique for automatically generating a mathematical model for machinery systems. The process starts from a relatively small amount of input data and develops the information required to model a mechanical system with Lagrange’s equation. The technique uses elements of graph theory which were developed for electrical networks. The basic identifications required for mechanical systems are: paths from ground to mass centers, the independent loops of parts, if any, and paths associated with applied force effects. The techniques described in this paper have been used successfully in a generalized computer program, DAMN.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


1999 ◽  
Vol 32 (5) ◽  
pp. 864-870 ◽  
Author(s):  
H. Putz ◽  
J. C. Schön ◽  
M. Jansen

A new direct-space method forabinitiosolution of crystal structures from powder diffraction diagrams is presented. The approach consists of a combined global optimization (`Pareto optimization') of the difference between the calculated and the measured diffraction pattern and of the potential energy of the system. This concept has been tested successfully on a large variety of ionic and intermetallic compounds.


1999 ◽  
Vol 14 (4) ◽  
pp. 258-260 ◽  
Author(s):  
W. Paszkowicz

X-ray powder diffraction pattern for InN synthesized using a microwave plasma source of nitrogen is reported. The data were obtained with the help of an automated Bragg-Brentano diffractometer using Ni-filtered CuKα radiation. The lattice parameters for the wurtzite-type unit cell are ao=3.5378(1) Å, co=5.7033(1) Å. The calculated density is 6.921±0.002 g/cm3.


Author(s):  
Ningxin Chen

Abstract A new and general approach for curvatures of conjugate surfaces is provided in this paper. The main characteristic of the approach is that relative curvatures and geodesic torsions of the conjugate surfaces are directly calculated in terms of the normal curvatures and geodesic torsions of the generating surface on two non-orthogonal tangents of surface curvilinears in global surface system. In comparison with the current approaches that use two orthogonal tangents or the principal directions in local system at each calculating point, the approach developed in this paper has a simple calculating process and a simple computer program. Based on the curvature equations, sliding velocities and sliding ratios of the conjugate surfaces are studied. The approach is illustrated by a numerical example of a plane enveloping globoidal wormgear drive.


2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.


Sign in / Sign up

Export Citation Format

Share Document