X-ray powder diffraction data for tetrazene nitrate monohydrate, C2H9N11O4 – ADDENDUM

2021 ◽  
Vol 36 (4) ◽  
pp. 299-299
Author(s):  
J. Maixner ◽  
J. Ryšavý
2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


2003 ◽  
Vol 12 (3) ◽  
pp. 310-314
Author(s):  
Chen Jian-Rong ◽  
Gu Yuan-Xin ◽  
Fan Hai-Fu

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


1995 ◽  
Vol 10 (4) ◽  
pp. 290-292 ◽  
Author(s):  
Mikio Sakaguchi ◽  
Ichiro Sakamoto ◽  
Ryuichi Akagi ◽  
Hideo Toraya

X-ray powder diffraction data for a new potassium sodium silicate Na1.3K0.7Si2O5are reported. The sample was prepared by calcining a mixture of NaOH, KOH, and sodium silicate (SiO2/Na2O=3.54, moisture content=60%) at 873 K for 2 h. The crystallographic data obtained by using the whole-powder-pattern decomposition method are Na1.3K0.7Si2O5, monoclinic, P21/c, a=4.8426(1) Å,b= 8.6892(2) Å,c= 11.9686(3) Å,β=90.373(2)°,V=503.60(2) Å3,Z=4,Dx= 2.51 g/cm3.


2021 ◽  
pp. 1-3
Author(s):  
J. Maixner ◽  
J. Ryšavý

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, C2H9N11O4, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, β = 97.826(3)°, unit-cell volume V = 1019.8(4) Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.


Sign in / Sign up

Export Citation Format

Share Document