Control of Growth Regulator Preconditioned Field Bindweed (Convolvulus arvensis) with Herbicides

1987 ◽  
Vol 1 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Rodney G. Lym ◽  
Neil E. Humburg

The effect of various growth regulators on seedling field bindweed (Convolvulus arvensisL. # CONAR) growth and control with herbicides was evaluated. Fourteen growth regulators were applied at 0.38 to 380 g/ha 7 days before herbicide application in greenhouse, growth chamber and field studies. Field bindweed seedlings pretreated with growth regulators were more effectively controlled by herbicides compared to those not pretreated in greenhouse evaluations. Abscisic acid [[R-(Z,E)]-(+)-5-(1-hydroxy-2,6-6-trimethyl-4-oxo-2-cyclohexane-1-yl)-3-methyl-2,4-pentadicenoic acid] (ABA), ancymidol [a-cyclopropyl-a-(p-methoxyphenyl)-5-pyrimidine methanol], cycloheximide {3-[2-(3,5-dimethyl-2-oxocylohexyl)-2-hydroxyethyl]glutarimide}, ethylenediamine tetraacetic acid [N,N′-1,2-ethanediyl-bis-(N-(carboxymethyl) glycine] (EDTA), and 1-naphthaleneacetic acid (NAA) increased field bindweed stem length. Ancymidol and gibberellic acid [ent-3α,10,13-trihydroxy-20-norgibberell-1,16-diene-7,19-dioc acid 19,10-lactone] (GA) increased root weight, and GA increased root length. Cycloheximide, ethephon [(2-chloroethyl)phosphonic acid] and MH (1,2-dihydro-3,6-pyridazinedione) decreased field bindweed root weight. Ancymidol, GA and IAA (indole-3-acetic acid) increased the number of shoots per plant of seedling field bindweed. Dicamba (3,6-dichloro-2-methoxybenzoic acid) efficacy was enhanced following field bindweed preconditioning with ethephon and IAA. Ancymidol and cycloheximide applied as pretreatments increased glyphosate [N-(phosphonomethyl)glycine] activity on seedling field bindweed. Ancymidol and IAA pretreatment improved field bindweed control with triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid}. Herbicide-growth regulator combination treatments that increased field bindweed control in greenhouse and growth chamber studies did not increase top growth control in the field.

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 137-139 ◽  
Author(s):  
C. S. James ◽  
G. N. Prendeville ◽  
G. F. Warren ◽  
M. M. Schreiber

Interactions between carbamate and growth regulator herbicides were antagonistic both in whole plants and in plant segments. When combinations of isopropylm-chlorocarbanilate (chlorpropham) and (2,4-dichlorophenoxy)acetic acid (2,4-D) were applied to the foliage of either redroot pigweed (Amaranthus retroflexusL.) or pale smartweed (Polygonum lapathifoliumL.), the severe twisting effects of 2,4-D were greatly reduced. This interaction did not involve differential movement or metabolism of either herbicide. The induced elongation of soybean hypocotyl sections by the three growth regulators 2,4-D, 3,6-dichloro-o-anisic acid (dicamba), and 4-amino-3,5,6-trichloropicolinic acid (picloram) was inhibited in the presence of either chlorpropham orS-ethyl dipropylthiocarbamate (EPTC). Similarly, curvature tests using soybean (Glycine max(L.) Merr.) hypocotyl sections showed the curvature induced by the growth regulators to be almost completely eliminated by the presence of the carbamates.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 737b-737
Author(s):  
Jesse R Quarrels ◽  
Steven E. Newman

A study was conducted to determine the effects of pine bark grind size and pine bark levels on the activity of two growth regulators on poinsettia Two bark grinds (≤ 6 mm and >10 mm) were used with four media combinations within each grind: vermiculite:bark:peat moss at 2:0:3, 2:1:2, 2:2:1, and 2:3:0 (by volume). Two growth regulators, paclobutrazol and uniconazole, were applied at 0, 0.125, and 0.250 mg/15 cm container in 250 ml water. Two poinsettia cultivars, `Freedom' and `Gutbier V-14 Glory', were planted September 2, 1993, pinched September 16, and growth regulators applied September 30. There were five single plant replications for each treatment. Stem length and bract area were effected by bark grind, bark level, growth regulator, and growth regulator rate. Plants treated with uniconazole had the shortest stems and the least bract area. Plants grown in the smaller grind and at higher bark levels were less effected. Plants treated with paclobutrazol had longer stems than those treated with uniconazole.


HortScience ◽  
1992 ◽  
Vol 27 (7) ◽  
pp. 841-843 ◽  
Author(s):  
C.D. Robacker ◽  
W.L. Corley

A micropropagation system to obtain plants from inflorescences of pampas grass (Cortaderia selloana Schult. `Pumila') was developed. Factors examined included developmental stage of inflorescence cultured and growth regulator combinations and concentrations that support explant establishment, shoot regeneration, and rooting. Immature inflorescences ≈300 mm long formed many shoot primordia when initially cultured on Murashige and Skoog basal medium containing 4.5 μm 2,4-D and 8.9 μm BA and subcultured to medium with 0.4 μm 2,4-D and 4.4 μm BA. Thereafter, monthly transfer to a medium without growth regulators yielded about three shoots per tube per month for more than 6 months. Most shoots rooted spontaneously and were easily hardened to greenhouse conditions. Field-tested plants flowered within 2 years and nearly all appeared identical to the parent cultivar. With this technique, several thousand plants can be obtained from a single inflorescence in 1 year. Chemical names used: N -(phenylmethyl)-1 H -purine-6-amine (BA); (2,4-dichlorophenoxy)acetic acid (2,4-D).


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 757D-758
Author(s):  
Stanislav Magnitskiy* ◽  
Claudio Pasian ◽  
Mark Bennett

Regulation of excessive vegetative growth is of importance in both field and bedding plant production. The goal of the study was to evaluate the effect of preplant seed soaking in growth regulators on the growth control of floricultural (verbena, salvia, pansy, marigold, celosia) and agronomic (cucumber, dill) crops. Seeds were soaked in water solutions of growth regulators of different concentrations ranging according to the crop from 50 to 1000 mg·L-1 for paclobutrazol, 1 to 10 mg·L-1 for uniconazole, 10 to 200 mg·L-1 for ancymidol, 100 to 5000 mg·L-1 for chlormequate chloride and dried at 20 °C for 24 h prior to sowing into plugs. In the first experiment, seeds of verbena, salvia, pansy, and dill soaked for 5 minutes in 50 mg·L-1 paclobutrazol solutions produced seedlings that were up to 43, 18, 30, and 22% shorter than the controls, respectively. Increased paclobutrazol concentrations and soaking time generally corresponded to a greater reduction of plant height, as well as delays and reduction in seedling emergence of all crops, except cucumber. In the second experiment, growth of marigold plugs from seeds soaked in 5 mg·L-1 uniconazole or 60 mg·L-1 ancymidol solutions during 45 min was associated with 23% or 6% plant height reduction, respectively. Soaking of marigold seeds in the solutions of chlormequate chloride did not significantly affect seedling growth. Increasing time of seed soaking in growth regulator solutions did not influence emergence of marigold seedlings. The height of celosia seedlings was only slightly reduced by soaking seeds in the solutions of all studied growth regulators. Results indicate that seed treatments with growth regulators might be useful in growth control of selected bedding plants.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 544a-544
Author(s):  
Jesse R. Quarrels ◽  
Steven E. Newman

A leaching frame was constructed to detect residual plant growth regulators in media. The table was 0.9 × 1.8 m and designed to hold 40 10-cm diameter by 30-cm PVC cylinders. Each cylinder was cut lengthwise in half and resealed with duct tape. Rooted cuttings of `Freedom' poinsettias were planted into each cylinder using two media combinations: 2 vermiculite: 2 peat moss: 1 pine bark and 2 vermiculite: 1 peat moss: 2 pine bark (by volume). Four growth regulator treatments were applied to the medium two weeks after transplanting: control, 0.25 mg paclobutrazol, 0.25 mg uniconazole, and 0.125 mg paclobutrazol applied as spike. After plant growth was recorded, the cylinders were removed and sliced lengthwise. Snapdragon plugs were then transplanted into the medium along the length of the cylinder to determine if any residual paclobutrazol remained. Paclobutrazol and uniconazole reduced stem length. The presence of pine bark in the media reduced the effect of the plant growth regulators.


HortScience ◽  
2019 ◽  
Vol 54 (2) ◽  
pp. 348-352 ◽  
Author(s):  
Susan M. Hawkins ◽  
Carol D. Robacker

Native grasses are increasingly used in the landscape. Little bluestem (Schizachyrium scoparium L.), a perennial bunchgrass native to most of the United States, has ornamental traits, such as variation in leaf color, differences in growth morphology, and attractive seed heads. Traditionally, cultivars of little bluestem are propagated by division, which limits the production of new plants. Our objective in this study was to develop an improved micropropagation protocol for little bluestem that would produce true-to-type plants. In 2016, we cultured immature inflorescences of eight genotypes of little bluestem on Murashige and Skoog (MS) medium with four combinations of kinetin (1.0 or 2.0 mg·L−1) and 2,4-D (0.5 or 1.0 mg·L−1) under three levels of light (dark, semilight, full light) to initiate callus. Cultures were evaluated 30 days after initiation and those that had initiated callus were subcultured. Media for subculturing and rooting contained either 0.1 mg·L−1 or no 1-Naphthaleneacetic acid (NAA). Light level had no effect on callus initiation. Initiation media with 1.0 mg·L−1 kinetin and either level of 2,4-D induced callus at almost twice the rate of media with 2.0 mg·L−1 kinetin, and cultures initiated on those media also produced almost twice the number of rooted plants over all genotypes. Genotype affected the number of rooted plants produced. The addition of NAA to medium for subculturing and rooting did not increase the number of rooted plants. In 2017, we cultured immature inflorescences of four genotypes of little bluestem on MS medium with 0.5 mg·L−1 2,4-D and either 1.0 mg·L−1 kinetin or 6-benzylaminopurine (BAP) under full light. Cultures were evaluated 30 days after initiation. Cultures that had initiated callus were subcultured onto MS medium with the same growth regulators as the initiation medium but without 2,4-D. Cultures were cycled between subculture medium with growth regulator and subculture medium with no additional growth regulator until rooted. Cultures initiated and subcultured on medium with BAP initiated two to three times more callus than those on kinetin and produced twice as many rooted plants. Our recommendation for rapid micropropagation of little bluestem is to initiate cultures on MS medium with 1.0 mg·L−1 BAP and 0.5 mg·L−1 2,4-D. After callus initiation, cultures should be subcultured to medium with BAP but no 2,4-D, alternating with medium with no additional growth regulators, until rooted.


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1292-1294 ◽  
Author(s):  
Barbara M. Reed

Micropropagated shoots of 49 Pyrus species and cultivars and one selection of Pyronia veitchii (Trabut) Guillaumin were evaluated to test their responses to several in vitro rooting techniques. Auxin treatment was required for rooting in most cases. Eighteen of 50 accessions rooted ≥50% with a 15-second, 10-mm IBA dip followed by growth on medium with no growth regulators (NGR). Twelve accessions rooted on a medium with 10 μm IBA applied for 1 week followed by NGR medium for 3 weeks; NGR medium alone was effective for only two accessions. Twenty-eight accessions rooted poorly with IBA treatments; an additional treatment of a 15-second dip in 10 mm NAA followed by NGR medium produced ≥50% rooting for eight genotypes. Root production increased for 10 of 19 especially recalcitrant genotypes by 10 μm IAA treatments in darkness or at 30C and NAA dip treatments. Of rooted shoots, 73% survived acclimation in the greenhouse. Selections of Pyrus betulifolia Bunge, P. calleryana Decne., P. hondoensis Kikuchi and Nakai, P. koehnei C. Schneider, P. pashia Buch.-Ham. ex D. Don, P. pyrifolia (Burm.f.) Nakai cv. Shinseiki, P. regelii Rheder, P. ussuriensis Maxim., and the Pyronia veitchii selection failed to root in any of the treatments. Twenty-five of 32 P. communis L. cultivars and three other species rooted on at least one of the treatments. Chemical names used: 1-naphthaleneacetic acid (NAA), 1H-indole-3-butyric acid (IBA), 1H-indole-3-acetic acid (IAA).


2006 ◽  
Vol 6 ◽  
pp. 169-175
Author(s):  
A.E. De Silva ◽  
M.A. Kadir ◽  
M.A. Aziz ◽  
S. Kadzimin

Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli ofAnanas comosusL. cv. Moris were assessedin vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 μM α-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 μM was economically better.


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 673-674 ◽  
Author(s):  
Paul Sprankle ◽  
C. L. Sandberg ◽  
W. F. Meggitt ◽  
Donald Penner

Glyphosate [N-(phosphonomethyl)glycine] was separated from its potential metabolites, aminomethylphosphonic acid, glycine, and sarcosine by using 500 μm-thick cellulose plates developed with ethanol:water:15 N NH4OH:trichloroacetic acid (TCA):17 N acetic acid (55:35: 2.5:3.5 g:2, v/v/v/w/v with v in ml). This TLC system separated impurities from the14C-glyphosate standard and glyphosate from possible metabolites in treated field bindweed(Convolvulus arvensisL.).


Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 19-21 ◽  
Author(s):  
Chuma S. O. Agbakoba ◽  
J. R. Goodin

Field bindweed (Convolvulus arvensisL.) was sprayed with a mixture of (2,4-dichlorophenoxy)acetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram). A mixture of picloram and 2,4-D each at 0.01 lb and 0.001 lb/A killed tops of plants faster than 2,4-D alone or picloram alone at the same rates. Higher rates of 1 lb/A picloram plus 1 lb/A 2,4-D and 0.1 lb/A picloram plus 0.1 lb/A 2,4-D were not consistently synergistic or antagonistic. The percent of plants which produced new growth were 0 for picloram alone at 1 lb/A, 20 for a mixture of 2,4-D and picloram each at 1 lb/A, and 40 for 2,4-D alone at 1 lb/A. Other rates of 0.1 lb/A, 0.01 lb/A, and 0.001 lb/A did not control regrowth of field bindweed. Application of unlabeled picloram simultaneously with14C-2,4-D increased translocation of14C-2,4-D, but the reverse was not true.


Sign in / Sign up

Export Citation Format

Share Document