Enhanced Activity of Single-Isomer Fenoxaprop on Cool-Season Grasses

1991 ◽  
Vol 5 (4) ◽  
pp. 826-833 ◽  
Author(s):  
George W. Mueller-Warrant

Formulations of fenoxaprop enriched in the R(+) isomer, HOE 46360-08H EW (described as an emulsifiable water-based formulation) and HOE 46360-05H EC (emulsifiable concentrate), were compared with the commercial racemate EC for control of roughstalk bluegrass and tolerance of perennial ryegrass and tall fescue grown for seed. The enriched EW and EC formulations were more than twice as active as the racemate per kg total fenoxaprop, despite enrichment to only 92 and 89% R(+) isomer purity, which should have increased activity by 1.84- and 1.78-fold, respectively. Increased activity was evident both as improved weed control and as decreased crop tolerance. Although the 3.69-fold increase in activity of HOE 46360 EW on roughstalk bluegrass relative to the racemate may be partly due to changes in the emulsion, the 3.06-fold increase in activity of HOE 46360 EC suggests that the S(-) isomer somehow interferes wih the activity of the R(+) isomer. Use of 280 g ai ha–1of the racemate could be replaced with 76 g ha–1of the EW or 92 g ha–1of the EC formulation of HOE 46360 for equivalent roughstalk bluegrass control, but with decreased crop tolerance in perennial ryegrass and tall fescue.

HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 798-800 ◽  
Author(s):  
John B. Workman ◽  
Patrick E. McCullough ◽  
F. Clint Waltz ◽  
James T. Brosnan ◽  
Gerald M. Henry

Turfgrass managers applying aminocyclopyrachlor for annual and perennial broadleaf weed control in cool-season turfgrasses may want to reseed into treated areas. Field experiments were conducted in Georgia), Tennessee, and Texas to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after aminocyclopyrachlor applications. Perennial ryegrass and tall fescue establishment were similar to the non-treated control after treatments of aminocyclopyrachlor and 2,4-dichlorophenoxyacetic acid (2,4-D) + dicamba + methylchlorophenoxypropionic acid (MCPP) at 0, 2, 4, or 6 weeks before seeding. Results demonstrate that no reseeding interval is required after aminocyclopyrachlor treatment. Perennial ryegrass and tall fescue can be safely seeded immediately after aminocyclopyrachlor treatment at 39, 79, and 158 g/a.i./ha.


1991 ◽  
Vol 5 (3) ◽  
pp. 616-621 ◽  
Author(s):  
Adrian J. Enache ◽  
Richard D. Ilnicki

Field experiments were conducted in 1986 to 1990 to determine the effect of different rates and application times of BAS 514 and dithiopyr alone and in combination on control of large crabgrass and dandelion in Kentucky bluegrass, tall fescue, and perennial ryegrass. Herbicides evaluated were applied PRE, early POST, and late POST. Results indicated that both herbicides provided excellent PRE control in all years. BAS 514 rates ranged from 0.84 to 0.56 kg ai ha-1. Rates of dithiopyr ranged from 0.43 to 0.56 kg ai ha-1. In addition to crabgrass control, both herbicides controlled dandelion, BAS 514 exhibiting slightly better activity than dithiopyr. BAS 514 at 0.84 to 1.12 kg ai ha-1 and dithiopyr at 0.26 to 0.56 kg ai ha-1 resulted in excellent early POST crabgrass control when applied at the one- to three-leaf stage of crabgrass. BAS 514 and dithiopyr applied late POST (2 to 3 tillers of crabgrass) resulted in 63 to 85% control of crabgrass and 29 to 85% control of dandelion at 10 wk after application. No weed control enhancement was evident from tank mixing the two herbicides. Excellent turf safety was demonstrated by both herbicides on all three turf species.


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


2004 ◽  
Vol 18 (4) ◽  
pp. 977-981 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Field experiments were conducted at Adelphia, NJ, in 2001 and 2002 to evaluate the response of Kentucky bluegrass, perennial ryegrass, tall fescue, and Chewings fine fescue to sulfosulfuron. Single applications of sulfosulfuron at 6 to 67 g ai/ha were applied to mature swards of each species. Visual chlorosis ratings were taken and clippings were collected 4 wk after treatment (WAT), and turf injury was rated 8 WAT. Chlorosis on all species increased with increasing sulfosulfuron rate. In 2001, Kentucky bluegrass, perennial ryegrass, tall fescue, and fine fescue chlorosis reached 33, 43, 65, and 61% at 4 WAT, respectively, whereas in 2002, chlorosis only reached 13, 26, 46, and 26%, respectively. Clipping weights of all species decreased as application rate increased. Reductions in Kentucky bluegrass and perennial ryegrass clipping weights were less severe than those in tall and fine fescue. By 8 WAT, Kentucky bluegrass, perennial ryegrass, and fine fescue had nearly complete recovery from any initial visual injury symptoms. However, tall fescue injury was still evident 8 WAT in both years. Initial injury of Kentucky bluegrass, perennial ryegrass, and Chewings fine fescue was in the form of discoloration and stunting. Significant stand thinning was only evident in the tall fescue studies. These studies suggest that Kentucky bluegrass and perennial ryegrass may be more tolerant than tall fescue to applications of sulfosulfuron and fine fescue is intermediately tolerant to sulfosulfuron.


2018 ◽  
Vol 32 (5) ◽  
pp. 557-563
Author(s):  
Patrick J. Maxwell ◽  
Travis W. Gannon ◽  
Richard J. Cooper

Abstract2,4-dimethylamine salt (2,4-D) is a synthetic auxin herbicide used extensively in turfgrass for selective broadleaf weed control. Previous research has shown that 2,4-D can dislodge from treated turf, notably in the presence of canopy moisture. Practitioners commonly apply 2,4-D in combination with various commercially available surfactants to increase efficacy. Field research was completed to evaluate the effect of surfactant inclusion and sample collection time within a day on dislodgeable 2,4-D residue from perennial ryegrass. Research was initiated May 24, 2016 in Raleigh, NC and repeated in time to quantify dislodgeable 2,4-D following application (2.1 kg ae ha–1) either alone or with a nonionic surfactant (0.5% vol/vol). Sample collection occurred 1, 2, 3, 6, 12 or 24 d after treatment (DAT) at AM [7:00 AM Eastern Standard Time (EST)] and PM (2:00 PM EST) sample timings within a day. 2,4-D applied with surfactant (0.4% to 25.4% of applied) reduced dislodgeable foliar residue compared to 2,4-D applied alone (0.5% to 31.2%) from 1 through 6 DAT, whereas dislodgeable 2,4-D was not detected at 12 and 24 DAT. Regardless of surfactant inclusion or absence, samples collected in the AM resulted in a 5- to 10-fold increase in dislodgeable 2,4-D compared to samples collected in the PM from 1 through 6 DAT, suggesting that 2,4-D dislodgeability may be influenced by conditions favoring canopy moisture development. This research will improve turfgrass management practices and research designed to minimize human 2,4-D exposure.


1993 ◽  
Vol 7 (1) ◽  
pp. 169-173 ◽  
Author(s):  
B. Jack Johnson ◽  
Sarah H. Bundschuh

An experiment was conducted to determine the interval needed between dithiopyr formulation (EC and G) treatments and seeding of tall fescue, perennial ryegrass, and creeping bentgrass. The cover of tall fescue 10 wk after seeding was not reduced when the EC formulation was applied at ≤ 0.84 kg ha−1 ≥ 2 wk before seeding. Dithiopyr G at 0.56 kg ha−1 did not reduce tall fescue cover when applied at ≥ 8 wk before seeding; whereas, 0.84 kg ha−1 required a 12-wk interval between treatment and seeding in one of two years. Perennial ryegrass cover 10 wk after seeding was not reduced with dithiopyr at 0.56 kg ha−1 applied from 2 to 12 wk before seeding. When the dithiopyr G was applied at 0.56 kg ha−1, an 8-wk interval before seeding was needed to prevent a reduction in turf cover. When rates of EC and G dithiopyr were increased to 0.84 kg ha−1 an 8-wk interval was needed for the EC and a 12-wk interval was needed for the G formulation to prevent a reduction in cover in one of two years. Creeping bentgrass cover was not reduced when dithiopyr EC was applied at 0.56 kg ha−1 ≥ 8 wk before seeding. When the EC rate was increased to 0.84 kg ha−1 a 12-wk interval was needed between treatment and seeding in one of two years. When dithiopyr G was applied within 12 wk of seeding creeping bentgrass, the cover was reduced to an unacceptable level regardless of application rate.


1997 ◽  
Vol 11 (3) ◽  
pp. 478-483 ◽  
Author(s):  
David W. Cudney ◽  
Clyde L. Elmore ◽  
Victor A. Gibeault ◽  
John S. Reints

Common bermudagrass is an invasive, perennial weed of cool-season turfgrass in California. Complete renovation of the infested area has been the only practical method of restoring desirable cool-season turfgrasses. In studies in southern and northern California, common bermudagrass was suppressed with sequential herbicide applications, allowing seedling establishment and regrowth of established cool-season turfgrass species. One application of fenoxaprop, triclopyr, or their combinations did not control common bermudagrass. Sequential applications of these herbicide treatments resulted in 99, 94, and 100% control of common bermudagrass, respectively, and resulted in establishment of seeded perennial ryegrass in Riverside, CA, over a 2-yr period. Similar results were obtained in the recovery of established tall fescue from a common bermudagrass/tall fescue turfgrass mixture in Willows, CA. Both fenoxaprop and triclopyr can reduce emergence and stunt seedling growth of perennial ryegrass and tall fescue. Greenhouse studies showed that stunting and stand loss of tall fescue and perennial ryegrass seedlings could be reduced by delaying applications from PRE to the two-leaf stage.


2012 ◽  
Vol 610-613 ◽  
pp. 249-253 ◽  
Author(s):  
Jie Zhang ◽  
Yan Wang ◽  
Hong Fei Yang ◽  
Jian Long Li

The effect of hydrogen peroxide (H2O2) of low concentration on thermotolerance of tall fescue (Festuca arundinacea cv. Barlexas) and perennial ryegrass (Lolium perenne cv. Accent) was studied following a foliar pretreatment with 10 mM H2O2. Antioxidative enzymes activities and antioxidant content were measured in both cool-season turfgrass cultivars under heat stress (38/30 °C, day/night) and control normal temperature (26/15 °C, day/night). While activities of catalase(CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione-dependent peroxidases (GPX) were enhanced by H2O2pretreatment during heat stress. APX, GR and GPX activities were significantly enhanced during heat stress. These were likely the most important antioxidative enzymes in tall fescue and perennial ryegrass protecting plants against heat stress. The thermotolerance was also concomitant with an increased glutathione pool, as evaluated by the significant increase of the total glutathione pool in two pretreated cultivars. The increase of POD, CAT, APX, GR activities and significant increase of GPX activity prior to the initiation of heat stress in pre-treatment plants suggested a possible role for H2O2as a signaling molecule protecting them against the subsequent heat-induced damage.


Sign in / Sign up

Export Citation Format

Share Document