Yellow Nutsedge (Cyperus esculentus) Control in Peanuts (Arachis hypogaea)

1992 ◽  
Vol 6 (1) ◽  
pp. 108-112 ◽  
Author(s):  
W. James Grichar

Field studies were conducted from 1986 through 1988 to evaluate various herbicides for yellow nutsedge control and peanut yields. Three applications of pyridate provided control comparable to two applications of bentazon with yellow nutsedge regrowth beginning 3 to 4 wk after application depending on moisture conditions. Crop oil concentrate did not improve the activity of pyridate. Flurtamone provided control comparable with that of metolachlor. Nutsedge control with fomesafen was erratic with peanut injury noted. Peanut yields did not reflect the competitive nature of nutsedge.

1996 ◽  
Vol 10 (2) ◽  
pp. 278-281 ◽  
Author(s):  
W. James Grichar ◽  
A. Edwin Colburn ◽  
Paul A. Baumann

Field studies conducted from 1989 through 1991 evaluated methods of metolachlor application including POST followed by irrigation for yellow nutsedge control and peanut response. Metolachlor PPI stunted peanut in two of three years while metolachlor applied at emergence, 10, 20, or 30 days after peanut emergence (DAE) caused no peanut injury. Metolachlor 20 DAE provided > 95% yellow nutsedge control. Metolachlor soil-applied and again POST controlled yellow nutsedge at least 70%; however, some peanut stunting was noted. Bentazon plus metolachlor at 2.24 kg ai/ha controlled yellow nutsedge at least 92% when applied 30 DAE. Peanut yields were consistently the highest with metolachlor PRE at 1.40 kg ai/ha followed by a POST application of 1.40 kg ai/ha at 45 DAE.


2001 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin

Abstract Field studies were conducted from 1996 to 1998 in Georgia to determine peanut (Arachis hypogaea L.) and weed response to ethalfluralin (0.8 kg ai/ha) plus diclosulam applied preplant incorporated (PPI) at 9, 18, 26, 35 and 52 g ai/ha. Other treatments included ethalfluralin PPI followed by paraquat plus bentazon (140 and 280 g ai/ha, respectively) early postemergence (EPOST) applied alone or following ethalfluralin plus diclosulam (18 and 26 g ai/ha) PPI, ethalfluralin PPI followed by imazapic (71 g ai/ha) postemergence (POST), and ethalfluralin PPI. Ethalfluralin was applied PPI in all herbicide programs. Diclosulam controlled Florida beggarweed [Desmodium tortuosum (Sweet) D.C.], sicklepod [Senna obtusifolia (L.) Irwin and Barneby], and yellow nutsedge (Cyperus esculentus L.) inconsistently, and POST application of paraquat plus bentazon was needed for acceptable control. However, diclosulam controlled common ragweed (Ambrosia artemisiifolia L.), tropic croton (Croton glandulosus Muell-Arg.), wild poinsettia (Euphorbia heterophylla L.), and prickly sida (Sida spinosa L.) without the need for POST herbicides. Higher yields were recorded with diclosulam PPI followed by a sequential application of paraquat plus bentazon than herbicide programs not containing diclosulam or diclosulam alone. Diclosulam PPI followed by sequential applications of paraquat plus bentazon provided greater control of sicklepod and prickly sida that resulted in greater yields. Yields from dicosulam PPI followed by paraquat plus bentazon EPOST were equivalent to yields with paraquat plus bentazon EPOST followed by imazapic POST or imazapic EPOST.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
W. J. Grichar ◽  
P. A. Dotray

Field studies were conducted from 2007 through 2009 to determine weed efficacy and peanut (Arachis hypogaeaL.) response to herbicide systems that included ethalfluralin applied preplant incorporated. Control of devil's claw (Proboscidea louisianica(Mill.) Thellung), yellow nutsedge (Cyperus esculentusL.), Palmer amaranth (Amaranthus palmeriS. Wats.), and puncturevine (Tribulus terrestrisL.) was most consistent with ethalfluralin followed by either imazapic or imazethapyr applied postemergence. Peanut stunting was 19% when paraquat alone was applied early-postemergence. Stunting increased to greater than 30% when ethalfluralin applied preplant incorporated was followed byS-metolachlor applied preemergence and paraquat applied early-postemergence. Stunting (7%) was also observed when ethalfluralin was followed by flumioxazin plusS-metolachlor applied preemergence with lactofen applied mid-postemergence. Ethalfluralin followed by paraquat applied early-postemergence reduced peanut yield when compared to the nontreated check. Ethalfluralin applied preplant incorporated followed by imazapic applied mid-postemergence provided the greatest yield (6220 kg/ha). None of the herbicide treatments reduced peanut grade (sound mature kernels plus sound splits) when compared with the nontreated check.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


1999 ◽  
Vol 13 (3) ◽  
pp. 594-598 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
John R. Cranmer

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederaceavar.integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoeaspp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.


1994 ◽  
Vol 21 (1) ◽  
pp. 23-28 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald Wiley ◽  
F. Robert Walls ◽  
Stan R. Jones ◽  
...  

Abstract Field studies conducted in 1990 and 1991 at five locations in Georgia and one location in Virginia in 1991 evaluated imazethapyr [2-[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] and AC 263,222 [(±)-2[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid] for weed control, peanut tolerance, and yield. Imazethapyr and AC 263,222 applied early postemergence (EPOST) controlled smallflower morningglory [Jacquemontia tamnifolia (L.) Griseb], Ipomoea morningglory species, prickly sida (Sida spinosa L.), and coffee senna (Cassia occidentalis L.) greater than 90%. Imazethapyr did not control Florida beggarweed [Desmodium tortuosum (SW.) DC.] or sicklepod (Cassia obtusifolia L.) adequately, with control generally less than 40%. AC 263,222 controlled Florida beggarweed greater than 92% when applied EPOST and from 54 to 100% when applied postemergence (POST). Imazethapyr applied preplant incorporated (PPI) controlled bristly starbur (Acanthospermum hispidium DC.) 89% and imazethapyr and AC 263,222 applied EPOST controlled at least 96%. Imazethapyr controlled yellow nutsedge (Cyperus esculentus L.) 83% when applied PPI and 93% as an EPOST application. AC 263,222 controlled yellow nutsedge at least 90%. Peanut yields were higher with AC 263,222 than with imazethapyr. Imazethapyr systems that included alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), lactofen ([(±)2-ethoxy-l-methyl-2-oxoethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate] + 2,4-DB [4-(2,4-dichlorophenoxy)butanoic acid], paraquat [1,1′-dimethyl-4,4′-bipyridinium ion] + 2,4-DB, pyridate [O-(6-chloro-3-phenyl-4-pyridazinyl)-S-octyl carbonothioate] + 2,4-DB, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-l-methylethyl)acetamide], or 2,4-DB provided yields equivalent to AC 263,222.


2010 ◽  
Vol 24 (4) ◽  
pp. 478-482 ◽  
Author(s):  
Oleg Daugovish ◽  
Maren J. Mochizuki

Yellow nutsedge is a problematic weed in plasticulture strawberry because herbicides and fumigants currently used in California provide little to no control and because nutsedge shoots easily penetrate standard low-density polyethylene (LDPE) mulch to rapidly establish and compete with the crop. Field studies were conducted at two California locations near Oxnard and Camarillo from 2007 to 2009 to evaluate yellow nutsedge control with physical barriers. Nutsedge germinated in both autumn and spring through LDPE mulch alone, but paper placed between two layers of standard 0.15-mm black LDPE mulch, weed barrier fabric commonly used in landscapes placed under LDPE mulch, and Tyvek Home Wrap placed under LDPE mulch suppressed nutsedge emergence. In 1 yr, the size of strawberry plants grown with weed barrier fabric was reduced 23% compared with the other treatments and the number of marketable fruit in the third month of harvest was reduced 20% compared with LDPE mulch alone, likely because inadequately cut planting holes in this barrier restricted plant growth. Estimated costs for barrier treatments ranged from $5,000 to $12,000 ha−1compared with estimated hand-weeding costs of up to $24,000 ha−1. In 2007 to 2008 barrier treatments reduced the number of wind-dispersed weeds that commonly land and germinate in strawberry planting holes 67% compared with LDPE mulch alone. Removing the barriers at the end of the two seasons revealed that nutsedge plants sprouted but failed to grow and produce new tubers under the barriers. This observation suggests that nutsedge-impermeable barriers may aid in depletion of the soil tuber bank and therefore can be an effective tool in managing nutsedge for the length of the growing season.


1995 ◽  
Vol 9 (4) ◽  
pp. 813-818 ◽  
Author(s):  
Timothy L. Grey ◽  
Glenn R. Wehtje ◽  
Robert H. Walker ◽  
Krishna P. Paudel

Field studies were conducted from 1991 through 1993 to compare Weed control, peanut tolerance, yield, and net return from imazethapyr applied alone or in combination with paraquat. Sicklepod and Florida beggarweed were controlled with paraquat early POST followed by a POST application of either paraquat with 2,4-DB or paraquat with 2,4-DB and bentazon. Imazethapyr-based early POST treatments offered no improvement. An early POST application of paraquat with bentazon or imazethapyr was required for maximum control of bristly starbur. Imazethapyr applied alone early POST, with no further treatment, provided optimum yellow nutsedge control. Maximum yield and net return were associated with any paraquat-containing early POST-applied treatment followed by one of the tank mixed POST options.


2008 ◽  
Vol 22 (3) ◽  
pp. 442-447 ◽  
Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Todd A. Baughman

Field studies were conducted in different peanut-growing areas of Texas during the 1999 through 2001 growing seasons to evaluate yellow nutsedge control and peanut tolerance to diclosulam alone applied PRE,S-metolachlor alone applied POST, or diclosulam applied PRE followed by (fb)S-metolachlor applied POST. Yellow nutsedge control was > 80% at five of six locations when diclosulam at 0.018 or 0.026 kg/ha applied PRE was fbS-metolachlor applied POST at 0.56, 1.12, or 1.46 kg ai/ha. Peanut stunting was noted with diclosulam at the High Plains locations but not at the Rolling Plains or south Texas locations. This stunting with diclosulam was due to a combination of peanut variety and high soil pH. Peanut yield was not always increased where yellow nutsedge was controlled.


Weed Science ◽  
1978 ◽  
Vol 26 (1) ◽  
pp. 10-16 ◽  
Author(s):  
P. E. Keeley ◽  
R. J. Thullen

The influence of artificial shading (0, 30, 47, 70, 80, and 94% shade) on growth of yellow nutsedge(Cyperus esculentusL.) and the time required for developing canopies of several crops to intercept a given amount of light were investigated in field studies to estimate the potential of crops to compete with yellow nutsedge for light. Average number of shoots and tubers and total dry matter production of yellow nutsedge increased in direct proportion to increased amounts of light (correlation coefficient (r ≥.98). Compared to no shade, flower production was substantially reduced by 30 and 47% shade and was essentially absent under more dense treatments. Photosynthetically active radiation (PAR) measured at weekly intervals indicated that light interception occurred first within the drill row of crops, then on shoulders of planting beds, and finally in furrows. The most rapidly developing canopies studied [corn(Zea maysL.), potatoes(Solanum tuberosumL.), and safflower(Carthamus tinctoriusL.)] intercepted 90% or greater PAR, including illumination in furrows, within 8 to 9 weeks after planting. About 12, 12, and 16 weeks were required for 80% interception for cowpeas [Vigna unguiculata(L.) Walp.], milo [Sorghum bicolor(L.) Moench.], and cotton(Gossypium hirsutumL.), respectively. Fall-planted barley(Hordeum vulgareL.) intercepted about 90% PAR by March 12. Alfalfa(Medicago sativaL.) intercepted about 90% PAR within 2 to 3 weeks after individual cuttings. Although onions(Allium cepaL.) planted in December intercepted 95% of the PAR in each of the two drill rows per bed about 26 weeks after planting, only 20 to 30% interception occurred in furrows and row middles.


Sign in / Sign up

Export Citation Format

Share Document