Use of Quinclorac Plus 2,4-D for Controlling Field Bindweed (Convolvulus arvensis) in Fallow

1999 ◽  
Vol 13 (4) ◽  
pp. 731-736 ◽  
Author(s):  
Stephen F. Enloe ◽  
Philip Westra ◽  
Scott J. Nissen ◽  
Stephen D. Miller ◽  
Phillip W. Stahlman

Field studies were conducted in Colorado, Kansas, and Wyoming to compare the use of quinclorac plus 2,4-D with picloram plus 2,4-D, dicamba plus 2,4-D, a glyphosate plus 2,4-D premix, and 2,4-D alone for control of field bindweed (Convolvulus arvensis) in a winter wheat (Triticum aestivum)-fallow rotation. Treatments were applied in late summer or fall each year for two, three, or four consecutive years at the beginning and end of each fallow period. Evaluations were taken 10 to 12 mo after treatment each year. Quinclorac plus 2,4-D and picloram plus 2,4-D consistently performed as well as or better than 2,4-D, dicamba plus 2,4-D, and glyphosate plus 2,4-D. Wheat yields increased when field bindweed was controlled during the fallow period. Strong correlations (r> −0.85) were obtained among visual field bindweed evaluation, biomass, and stand count data.

2016 ◽  
Vol 30 (3) ◽  
pp. 708-716 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Bradley D. Hanson

Field bindweed is a deep-rooted and drought-tolerant perennial that can be difficult to control once it has become established in specialty crops. Field studies were conducted in 2013 and 2014 to evaluate the efficacy of currently registered preplant (PP), PPI, PRE, and POST herbicides for field bindweed management in both early and late-planted processing tomatoes. Results show that bindweed cover in PPI/PRE programs (trifluralin, alone or in combination with rimsulfuron;S-metolachlor; or sulfentrazone) was reduced > 50% in early planted tomatoes, relative to the no PPI/PRE herbicide treatment (0 to 31% cover at up to 6 wk after transplanting [WAT]). Similar trends were observed with respect to field bindweed density. PP applications of glyphosate to emerged bindweed in late-planted tomatoes, coupled with PPI/PRE herbicide applications, reduced weed cover (1 to 13% at up to 6 WAT) by more than one-half when compared with plots treated with residual herbicides alone (1 to 43% at up to 6 WAT); perennial vine density was also reduced > 50%. PP herbicide burndown applications and the use of residual products can significantly improve the suppression of field bindweed in processing tomato systems. The emergence and vigor of bindweed vines may differ with respect to the timing of transplant operations and should be considered when developing management strategies


2003 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
I. A. Zasada ◽  
H. Ferris ◽  
C. L. Elmore ◽  
J. A. Roncoroni ◽  
J. D. MacDonald ◽  
...  

Field studies were conducted to evaluate brassicaceous amendments in combination with solarization against diverse soilborne organisms in cut-flower production systems. Across a diversity of California climates, the application of broccoli (Brassica oleracea var. botrytis) did not consistently reduce populations of Fusarium spp., citrus nematode (Tylenchulus semipenetrans), or weeds. Solarization in combination with broccoli amendments did not consistently improve pest suppression in cool coastal regions, whereas solarization was an important component of suppression in the hot central valley. When the biomass of broccoli was increased from 4 to 8.4 dry tons/ha, there was a decrease in survival of weeds and citrus nematode but the effect on Fusarium spp. survival was not consistent. A horseradish (Armoracia lapathifolia) amendment reduced nematode populations compared to broccoli, but increased field bindweed (Convolvulus arvensis L.). Our research demonstrates that soilborne organisms vary greatly in their susceptibility to brassicaceous amendments. The citrus nematode was consistently suppressed by brassicaceous amendments, while the effect on Fusarium spp. and weeds was variable. To achieve consistent and reliable pest suppression in amendment-based management systems, it is essential to determine and understand the component mechanisms active against specific soilborne organisms. Accepted for publication 10 October 2003. Published 20 November 2003.


1991 ◽  
Vol 5 (2) ◽  
pp. 411-415 ◽  
Author(s):  
David C. Heering ◽  
Thomas F. Peeper

Field experiments were conducted in Oklahoma to evaluate the effect of three imidazolinone herbicides and metsulfuron on established field bindweed and hard red winter wheat followcrops. Imazapyr at 280 g ai ha-1and imazethapyr at 560 g ai ha-1controlled field bindweed from 78 to 100% for 48 wk, but imazaquin at 560 g ai ha-1, metsulfuron at 17.5 g ai ha-1, and 2,4-D plus picloram at 1120 plus 280 g ae ha-1did not. Imidazolinone herbicides reduced forage and grain yield of wheat seeded 8 to 14 wk after herbicide application. Only imazapyr reduced grain yield of wheat seeded 15 mo after treatment.


Weed Science ◽  
1979 ◽  
Vol 27 (3) ◽  
pp. 332-335
Author(s):  
P. A. Banks ◽  
L. V. Hill ◽  
P. W. Santelmann

Field bindweed (Convolvulus arvensisL.) was controlled most effectively when glyphosate [N-(phosphonomethyl)glycine] was applied as a foliar spray to blooming field bindweed. This control resulted in significant yield increases of winter wheat (Triticum aestivumL.). Earlier growth stage treatments were less effective. Dicamba (3,6-dichloro-o-anisic acid), used similarly, controlled field bindweed but caused injury to the following wheat crop. Preharvest treatments of glyphosate in wheat aided harvesting operations and controlled the perennial field bindweed through the summer. Several dinitroaniline herbicides applied as a subsurface layer (SSL), controlled field bindweed for more than 8 months after treatment. However, these treatments caused visible injury and affected the yield of the first crop of wheat but had little effect on a second crop. Dicamba applied SSL at lower rates resulted in excellent field bindweed control.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 622-628 ◽  
Author(s):  
Allen F. Wiese ◽  
Clay D. Salisbury ◽  
Brent W. Bean ◽  
Monty G. Schoenhals ◽  
Steve Amosson

Field bindweed infests millions of hectares in the Great Plains greatly reducing productivity and value of land. The standard practice for field bindweed control is sweep tillage at 3 wk intervals combined with one or two annual 2,4-D) applications during the 14 mo fallow period in a winter wheat-fallow crop rotation. This was compared to tillage and 2,4-D in conjunction with dicamba or a mixture of picloram+2,4-D applied once during the first October of the first 14 mo fallow period. Also, three no-tillage systems were included using glyphosate+2,4-D at monthly intervals. Two of the treatments were supplemented with dicamba, or picloram+2,4-D as in the sweep tillage system. All treatments controlled field bindweed in two fallow periods and two winter wheat crops, and increased winter wheat yields to about twice the control. Sweep tillage at 3 wk intervals combined with 2,4-D resulted in $36 ha−1profit for an owner-operator compared to $15 ha−1loss with no herbicide or tillage treatment. On average no-tillage lost $35 ha−1. Other treatments, although controlling field bindweed, lost from 35 to $186 ha−1. To determine if long-term benefit after control was achieved, average yields for the area were used to calculate profits using normal farming practices. Profits were 136, 78, and $-50 ha−1, respectively, for sweep tillage and 2,4-D, no-tillage, and the untreated check. In a standard 33:67 owner-tenant rental, profits to the owner for the control period were 90, −33, and $43 ha−1, respectively for tillage and 2,4-D, no-tillage, and untreated check. The tenant lost from $24 to 69 ha−1for the three systems indicating owners must modify rental agreements during a field bindweed control program.


1964 ◽  
Author(s):  
Milton S. Katz ◽  
Paul A. Cirincione ◽  
William Metlay
Keyword(s):  

Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 63-67 ◽  
Author(s):  
R. Bradley Lindenmayer ◽  
Scott J. Nissen ◽  
Philip P. Westra ◽  
Dale L. Shaner ◽  
Galen Brunk

Field bindweed is extremely susceptible to aminocyclopyrachlor compared to other weed species. Laboratory studies were conducted to determine if absorption, translocation, and metabolism of aminocyclopyrachlor in field bindweed differs from other, less susceptible species. Field bindweed plants were treated with 3.3 kBq14C-aminocyclopyrachlor by spotting a single leaf mid-way up the stem with 10 µl of herbicide solution. Plants were then harvested at set intervals over 192 h after treatment (HAT). Aminocyclopyrachlor absorption reached a maximum of 48.3% of the applied radioactivity by 48 HAT. A translocation pattern of herbicide movement from the treated leaf into other plant tissues emerged, revealing a nearly equal aminocyclopyrachlor distribution between the treated leaf, aboveground tissue, and belowground tissue of 13, 14, and 14% of the applied radioactivity by 192 HAT. Over the time-course, no soluble aminocyclopyrachlor metabolites were observed, but there was an increase in radioactivity recovered bound in the nonsoluble fraction. These results suggest that aminocyclopyrachlor has greater translocation to belowground plant tissue in field bindweed compared with results from other studies with other herbicides and other weed species, which could explain the increased level of control observed in the field. The lack of soluble metabolites also suggests that very little metabolism occurred over the 192 h time course.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 135 ◽  
Author(s):  
Taghi Bararpour ◽  
Ralph Hale ◽  
Gurpreet Kaur ◽  
Jason Bond ◽  
Nilda Burgos ◽  
...  

Diclofop-resistant Italian ryegrass (Lolium perenne L. ssp. Multiflorum (Lam.) Husnot) is a dominant weed problem in non-irrigated winter wheat (Triticum aestivum L.) in mid-south USA. Field studies were conducted from 2001 to 2007 to evaluate the efficacy of herbicides for diclofop-resistant ryegrass control and effect on wheat yield. In 2001 through 2004, chlorsulfuron/metsulfuron at 0.026 kg ha−1 preemergence (PRE) followed by (fb) mesosulfuron at 0.048 kg ha−1 at 4-leaf to 2-tiller ryegrass provided 89% control of diclofop-resistant Italian ryegrass, resulting in the highest wheat yield (3201 kg ha−1). Flufenacet/metribuzin at 0.476 kg ha−1 applied at 1- to 2-leaf wheat had equivalent Italian ryegrass control (87%), but lesser yield (3013 kg ha−1). In 2005–2006, best treatments for Italian ryegrass control were chlorsulfuron/metsulfuron, 0.013 kg ha−1 PRE fb mesosulfuron 0.015 kg ha−1 at 3- to 4-leaf ryegrass (92%); metribuzin, 0.280 kg ha−1 at 2- to 3- leaf wheat fb metribuzin at 2- to 3-tiller ryegrass (94%); chlorsulfuron/metsulfuron (0.026 kg ha−1) (89%); and flufenacet/metribuzin at 1- to 2-leaf wheat (89%). Chlorsulfuron/metsulfuron fb mesosulfuron provided higher yield (3515 kg ha−1) than all other treatments, except metribuzin fb metribuzin.


1996 ◽  
Vol 10 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Carla N. Duncan Yerkes ◽  
Stephen C. Weller

Two biotypes of field bindweed differing in their susceptibility to glyphosate were used to determine if diluent or carrier volume and additional surfactant could overcome differences in intraspecific response to glyphosate. In greenhouse studies, glyphosate (formulated product) was applied at 1.68 kg/ha in three diluent volumes (142, 189, and 237 L/ha), with and without 1 % (v/v) additional amphoteric surfactant. Nonparametric and ordinal categorical analyses indicated that field bindweed biotype, diluent volume, and surfactant significantly increased glyphosate phytotoxicity 7 DAT. Only biotype and volume were significant 21 DAT. The tolerant biotype was less injured at the 189 and 237 L/ha volumes than the susceptible biotype. Field bindweed injury was similar at a diluent volume of 142 L/ha for both biotypes. These greenhouse studies suggest that control of field bindweed may be improved with glyphosate by using low spray volume in concert with additional surfactant.


SpringerPlus ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Xuekun Zhang ◽  
Hui Xi ◽  
Kejian Lin ◽  
Zheng Liu ◽  
Yu Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document