scholarly journals Introduction to quantitative engineering design methods via controls engineering

Author(s):  
Briana M. Lucero ◽  
Matthew J. Adams ◽  
Cameron J. Turner

AbstractFunctional modeling is an effective method of depicting products in the design process. Using this approach, product architecture, concept generation, and physical modeling all contribute to the design process to generate a result full of quality and functionality. The functional basis approach provides taxonomy of uniform vocabulary to produce function structures with consistent functions (verbs) and flows (nouns). Material and energy flows dominate function structures in the mechanical engineering domain with only a small percentage including signal flows. Research suggests that the signal flow gap is due to the requirement of “carrier” flows of either material or energy to transport the signals between functions. This research suggests that incorporating controls engineering methodologies may increase the number of signal flows in function structures. We show correlations between the functional modeling and controls engineering in four facets: schematic similarities, performance matching through flows, mathematical function creation using bond graphs, and isomorphic matching of the aforementioned characteristics allows for analogical solutions. Controls systems use block diagrams to represent the sequential steps of the system. These block diagrams parallel the function structures of engineering design. Performance metrics between the two domains can be complimentary when decomposed down to nondimensional engineering units. Mathematical functions of the actions in controls systems can resemble the functional basis functions with bond graphs by identifying characteristic behavior of the functions on the flows. Isomorphic matching, using the schematic diagrams, produces analogies based upon similar functionality and target performance metrics. These four similarities bridge the mechanical and electrical domains via the controls domain. We provide concepts and contextualization for the methodology using domain-agnostic examples. We conclude with suggestion of pathways forward for this preliminary research.

Author(s):  
Briana M. Lucero ◽  
Matthew J. Adams

Functional Modeling allows a direct, and sometimes abstract, method for depicting a product. Through this method, product architecture, concept generation and physical modeling can be used to obtain repeatable and more meaningful results. The Functional Basis approach of engineering design, as taught to engineering design students, provides the vocabulary to produce a uniform approach to function structures with functions (verbs) and flows (nouns). This paper suggests that the flows, particularly the “signal” flows, can be correlated to additional domains domain through transfer functions common in controls engineering. Controls engineering employs transfer functions to mathematically represent the physical or digital functions of a system or product using block diagrams to show the individual steps. The research herein suggests the correlations between the mathematical representations of transfer functions and the functional basis of engineering design through the actions performed upon “signal” flows. Specifically, the methodologies employed by controls engineering can relate to engineering design by 1) Schematic similarities, 2) Quantifiable performance metric inputs/outputs, 3) Mathematical representations of the flows, and 4) isomorphic matching of the schematics. Controls systems use block diagrams to represent the sequential steps of the system, These block diagrams parallel the functions structures of engineering design. Performance metrics between the two domains can be complimentary when decomposed down to non-dimensional engineering units. Mathematical Functions of the actions in a controls systems can resemble the functional basis functions through the use if bond graphs by identifying characteristic behavior of the functions on the flows. Isomorphic matching using the schematic diagrams can be used to find analogies based upon similar functionality and target performance metrics. When these four similarities are performed, parallels between the engineering domain and the controls engineering can be establish. Examples of cross-domain matching via transfer functions and controls systems are provided as contextualization for the concepts proposed. Pathways forward for this preliminary research are additionally suggested.


Author(s):  
Osamah Malik Mohammed ◽  
Ahmed Z.M. Shammari

Function modeling in engineering design, as one of the most common abstract language during design process and especially early stages, is introduced in a common frame for investigating possible development areas. Comparative studies are conducted for analyzing commonalities of various approaches and methods as well as its variances. The interaction of functional modeling with design theories and methodologies are reviewed in detail. The aims of those reviews are highlighting features of various methods of FM and its noticed limitations and discussing applicability of those methods and approaches in various fields of design. Finally, a proposed future works is presented for filling identified gaps within generality and applicability of FM within various design fields.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

Engineering design is considered a creative field that involves many activities with the end goal of a new product that fulfills a purpose. Utilization of systematic methods or tools that aid in the design process is recognized as standard practice in industry and academia. The tools are used for a number of design activities (i.e., idea generation, concept generation, inspiration searches, functional modeling) and can span across engineering disciplines, the sciences (i.e., biology, chemistry) or a non-engineering domain (i.e., medicine), with an overall focus of encouraging creative engineering designs. Engineers, however, have struggled with utilizing the vast amount of biological information available from the natural world around them. Often it is because there is a knowledge gap or terminology is difficult, and the time needed to learn and understand the biology is not feasible. This paper presents an engineering-to-biology thesaurus, which we propose affords engineers, with limited biological background, a tool for leveraging nature’s ingenuity during many steps of the design process. Additionally, the tool could also increase the probability of designing biologically-inspired engineering solutions. Biological terms in the thesaurus are correlated to the engineering domain through pairing with a synonymous function or flow term of the Functional Basis lexicon, which supports functional modeling and abstract representation of any functioning system. The second version of the thesaurus presented in this paper represents an integration of three independent research efforts, which include research from Oregon State University, the University of Toronto, and the Indian Institute of Science, and their industrial partners. The overall approach for term integration and the final results are presented. Applications to the areas of design inspiration, comprehension of biological information, functional modeling, creative design and concept generation are discussed. An example of comprehension and functional modeling are presented.


Author(s):  
Briana Lucero ◽  
Peter Ngo ◽  
Julie Linsey ◽  
Cameron J. Turner

Computational tools for aiding design-by-analogy have so far focused on function- and keyword-based retrieval of analogues. Given the critical role of performance and benchmarking in design, there is a need for performance metrics-driven analogy retrieval that is currently unmet. Towards meeting this need, a study has been done to investigate and propose frameworks for organizing the myriad technical performance metrics in engineering design, such as measures of efficiency. Such organizational frameworks are needed for the implementation of a computational tool which can retrieve relevant analogies using performance metrics. The study, which takes a deductive approach, defines a hierarchical taxonomy of performance metrics akin to the functional basis vocabulary of function and flow terms. Its derivation follows from bond graphs, control theory, and Design for X guidelines.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 133
Author(s):  
Tobias Vonderbank ◽  
Katharina Schmitz

Increasing performance in modern hydraulics is achieved by a close investigation of possible enhancements of its components. Prior research has pointed out that electromechanical actuators can form suitable alternatives to hydraulically piloted control systems. Since the requirements at these actuation systems depend on the operating conditions of the system, each actuator can be optimized to the respective hydraulic system. Considering that many different conceptual designs are suitable, the phase of conceptual design plays a decisive role during the design process. Therefore, this paper focuses on the process of developing new conceptual designs for electromechanical valve actuation systems using the method of function structures. Aiming to identify special design features, which need to be considered during the design process of electromechanical actuation systems, an exemplary actuator was designed based on the derived function structure. To highlight the potential of function structures for the development of new electromechanical valve actuation systems, two principal concepts, which allow the reduction of the necessary forces, have been developed by extending the function structure. These concepts have been experimentally investigated to identify their advantages and disadvantages.


Author(s):  
Michael J. Safoutin ◽  
Robert P. Smith

Abstract As engineering design is subjected to increasingly formal study, an informal attitude continues to surround the topic of iteration. Today there is no standard definition or typology of iteration, no grounding theory, few metrics, and a poor understanding of its role in the design process. Existing literature provides little guidance in investigating issues of design that might be best approached in terms of iteration. We review contributions of existing literature toward the understanding of iteration in design, develop a classification of design iteration, compare iterative aspects of human and automated design, and draw some conclusions concerning management of iteration and approaches to design automation.


Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


Sign in / Sign up

Export Citation Format

Share Document