A knowledge-based system for the conceptual design of grippers for handling fabrics

Author(s):  
V.C. MOULIANITIS ◽  
A.J. DENTSORAS ◽  
N.A. ASPRAGATHOS

The paper presents a knowledge-based system (KBS) for the conceptual design of grippers for handling fabrics. Its main purpose is the integration of the domain knowledge in a single system for the systematic design of this type of grippers. The knowledge presented, in terms of gripper, material and handling process, are classified. The reasoning strategy is based upon a combination of a depth-first search method and a heuristic method. The heuristic search method finds a final solution from a given set of feasible solutions and can synthesize new solutions to accomplish the required specifications. Details of the main features of the system are given, including its ability to take critical design decisions according to four criteria, weighted by the designer. The knowledge-based system was implemented in the Kappa P. C. 2.3.2 environment. Two examples are given to illustrate some critical aspects concerning the KBS development, to explain the operation of the proposed searching heuristic method, and to show its effectiveness in producing design concepts for grippers.

Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.


Author(s):  
DONGKON LEE

To obtain optimal design efficiently in the initial design stage of a ship, a hybrid system is developed by integrating the optimization algorithm and knowledge-based system. The hybrid system can manipulate numeric and symbolic data simultaneously. To increase search efficiency in a design space, the optimization algorithm (optimizer) is implemented by coupling a genetic algorithm (GA) and search method. The optimizer determines a candidate region around the optimum point by using the GA, then searches the optimum point by the search method concentrating in this region, thus reducing calculation time and increasing search efficiency. To generate input data for the optimizer, a rule-based system is developed. Some domain knowledge for ship optimization in the initial design stage is retrieved from a database of existing ship and design experts. The obtained knowledge is stored in the knowledge base. The optimizer incorporates a knowledge-based system with heuristic and analytic knowledge, thereby narrowing the feasible space of the design variables. Therefore, search speed and the capability of finding an optimum point will be increased in comparison with conventional approach. The developed system is applied principally to particulars of optimization of ships with multicriteria. Through application ship design, it shows that the hybrid system can be a useful tool for optimum design.


Author(s):  
Shun-Chieh Lin ◽  
◽  
Chia-Wen Teng ◽  
Shian-Shyong Tseng ◽  

Knowledge acquisition is a critical bottleneck in building a knowledge-based system. Much research and many tools have been developed to acquire domain knowledge with embedded rules that may be ignored in constructing the initial prototype. Due to different backgrounds and dynamic knowledge changing over time, domain knowledge constructed at one time may be degraded at any time thereafter. Here, we propose knowledge acquisition, called enhanced embedded meaning capturing under uncertainty deciding (enhanced EMCUD), which constructs a domain ontology and traces information over time to efficiently update time-related domain knowledge based on the current environment. We enrich the knowledge base and ease the construction of domain knowledge that changes with times and the environment.


1995 ◽  
Vol 48 (3) ◽  
pp. 243-270 ◽  
Author(s):  
Z. Hochman ◽  
H. Hearnshaw ◽  
R. Barlow ◽  
J.F. Ayres ◽  
C.J. Pearson

Author(s):  
Ze-Lin Liu ◽  
Yong Chen ◽  
You-Bai Xie

Exploring wide multi-disciplinary solution spaces to create conceptual design solutions is a difficult task for human designers due to lack of sufficient multi-disciplinary knowledge. A viable approach would be to develop a computer-aided system to synthesize the wide variety of knowledge for a given design task. However, the existing design synthesis systems are mainly domain-specific, focusing on conceptual design synthesis in a single or few limited disciplines. Therefore, this article introduces the development of a knowledge-based system for multi-disciplinary conceptual design synthesis, including the establishment of a knowledge base for organizing multi-disciplinary principle solutions and a design synthesis algorithm. The implementation of a prototype software is also reported, with the conceptual design of a solar fountain as a demonstrative case. The results of the case study show that the system can automatically and conveniently generate multi-disciplinary conceptual solutions.


Author(s):  
Riko Tantra ◽  
Glenn Y. Masada

A fuzzy knowledge-based software system, called The Advisor, is developed for mechanical designers to rapidly select instrumentation and control system solutions. Its knowledge-based system uses application constraints to select feasible solutions, and its fuzzy logic algorithms rank those solutions based upon user preferences. A new Quality Function, inspired by the Taguchi Quality Function, is proposed to combine quantitative and linguistic information in the fuzzy decision-making inference engine to better capture human tradeoff behavior in the equipment selection process. To date, a Motor Advisor and a Temperature Sensor Advisor have been developed and successfully tested. Part I of this paper presents the theory and methodology of The Advisor, its component algorithms to support the selection of motor systems, and the implementation of the new Quality Function in the Motor Advisor. Part II tests The Advisor in the selection of a load motor, motor driver, and motor controller in a motor failure design project.


Sign in / Sign up

Export Citation Format

Share Document