scholarly journals Effects of large-scale oceanic phenomena on non-cholera vibriosis incidence in the United States: implications for climate change

2019 ◽  
Vol 147 ◽  
Author(s):  
Chloë Logar-Henderson ◽  
Rebecca Ling ◽  
Ashleigh R. Tuite ◽  
David N. Fisman

Abstract Non-cholera Vibrio (NCV) species are important causes of disease. These pathogens are thermophilic and climate change could increase the risk of NCV infection. The El Niño Southern Oscillation (ENSO) is a ‘natural experiment’ that may presage ocean warming effects on disease incidence. In order to evaluate possible climatic contributions to observed increases in NCV infection, we obtained NCV case counts for the United States from publicly available surveillance data. Trends and impacts of large-scale oceanic phenomena, including ENSO, were evaluated using negative binomial and distributed non-linear lag models (DNLM). Associations between latitude and changing risk were evaluated with meta-regression. Trend models demonstrated expected seasonality (P < 0.001) and a 7% (6.1%–8.1%) annual increase in incidence from 1999 to 2014. DNLM demonstrated increased vibriosis risk following ENSO conditions over the subsequent 12 months (relative risk 1.940, 95% confidence interval (CI) 1.298–2.901). The ‘relative–relative risk’ (RRR) of annual disease incidence increased with latitude (RRR per 10° increase 1.066, 95% CI 1.027–1.107). We conclude that NCV risk in the United States is impacted by ocean warming, which is likely to intensify with climate change, increasing NCV risk in vulnerable populations.

2019 ◽  
Author(s):  
Chloë Logar-Henderson ◽  
Rebecca Ling ◽  
Ashleigh R. Tuite ◽  
David N. Fisman

AbstractPurposeEpidemics of diarrhea caused by toxigenic strains of Vibrio cholerae are of global public health concern, but non-cholera Vibrio (NCV) species are also important causes of disease. These pathogens are thermophilic, and climate change could increase the risk of NCV infection. The El Niño Southern Oscillation (ENSO) is a “natural experiment” that may presage ocean warming effects on disease incidence.MethodWe obtained vibriosis case counts in the United States by digitizing annual reports from the U.S. Cholera and Other Vibrio Illness Surveillance system. Trends and environmental impacts (of ENSO and the North Atlantic Oscillation) were evaluated using negative binomial and distributed nonlinear lag models. Associations between latitude and changing risk were evaluated with meta-regression.ResultsTrend models demonstrated significant seasonality (P < 0.001) and a 7% annual increase in disease risk from 1999 to 2014 (annual IRR 1.071, 95% CI 1.061-1.081). Distributed lag models demonstrated increased vibriosis risk following ENSO conditions over the subsequent 12 months (integrated RR 1.940, 95% CI 1.298-2.901). The rate of change in vibriosis risk increased with state latitude (RR per 10° increase 1.066, 95% CI 1.027-1.107).ConclusionVibriosis risk in the United States appears to be impacted by irregular large-scale ocean warming and exhibits a north-south gradient in rate of change as would be expected if changing disease incidence is attributable to ocean warming. Vulnerable populations, which include high-income countries with well-developed public health systems, may experience increased risk of this disease as a result of climate change.


Author(s):  
Christy M McCain

Abstract A set of 182 populations of 76 mammal species in the United States and Canada, examined in natural conditions with minimized disturbances or management effects, shows that responses to climate change include negative responses, such as elevational range contractions, upward shifts and decreases in abundance, positive responses, such as range expansions, and no detectable responses. Responses vary among and within mammal species but many are correlated with species traits, particularly the responses linked to high extinction risks (= climate change risk: decreases in population sizes, range contractions, local extirpations). The traits showing the strongest links to differential responses to climate change are 1) body size—large mammals respond more often and most negatively to climate change, 2) activity times—few mammals with flexible active times respond to climate change, and 3) spatial distribution—high-latitude and high-elevation mammals responded more often to climate change. Using these traits and two approaches to trait weighting, I modeled the relative climate change risk for all 328 terrestrial, nonvolant mammal species in the United States and Canada across 10 levels of risk (low = 1–2, moderate = 3–4, moderate-high = 5–6, high = 7–8, very high = 9–10). The models predicted that 15% of these mammalian species are in the high- and very high-risk categories, including species from most orders. Many mammal populations and species listed as of conservation concern due to other human impacts by national or international agencies are also predicted by my models to be in the higher categories of climate change risk. My intention for these models is to clarify for managers and researchers which, where, and how mammals are responding to climate change relatively independent of other anthropogenic stressors (e.g., large-scale habitat change, overhunting) and to provide a preliminary assessment of species most in need of careful monitoring for climate change impacts.


2014 ◽  
Vol 95 (9) ◽  
pp. 1381-1388 ◽  
Author(s):  
Gabriele Villarini ◽  
Radoslaw Goska ◽  
James A. Smith ◽  
Gabriel A. Vecchi

Riverine flooding associated with North Atlantic tropical cyclones (TCs) is responsible for large societal and economic impacts. The effects of TC flooding are not limited to the coastal regions, but affect large areas away from the coast, and often away from the center of the storm. Despite these important repercussions, inland TC flooding has received relatively little attention in the scientific literature, although there has been growing media attention following Hurricanes Irene (2011) and Sandy (2012). Based on discharge data from 1981 to 2011, the authors provide a climatological view of inland flooding associated with TCs, leveraging the wealth of discharge measurements collected, archived, and disseminated by the U.S. Geological Survey (USGS). Florida and the eastern seaboard of the United States (from South Carolina to Maine and Vermont) are the areas that are the most susceptible to TC flooding, with typical TC flood peaks that are 2 to 6 times larger than the local 10-yr flood peak, causing major flooding. A secondary swath of extensive TC-induced flooding in the central United States is also identified. These results indicate that flooding from TCs is not solely a coastal phenomenon but affects much larger areas of the United States, as far inland as Illinois, Wisconsin, and Michigan. Moreover, the authors highlight the dependence of the frequency and magnitude of TC flood peaks on large-scale climate indices, and the role played by the North Atlantic Oscillation and the El Niño–Southern Oscillation phenomenon (ENSO), suggesting potential sources of extended-range predictability.


2018 ◽  
Vol 99 (7) ◽  
pp. 1359-1376 ◽  
Author(s):  
Philip J. Klotzbach ◽  
Steven G. Bowen ◽  
Roger Pielke ◽  
Michael Bell

AbstractContinental United States (CONUS) hurricane-related inflation-adjusted damage has increased significantly since 1900. However, since 1900 neither observed CONUS landfalling hurricane frequency nor intensity shows significant trends, including the devastating 2017 season.Two large-scale climate modes that have been noted in prior research to significantly impact CONUS landfalling hurricane activity are El Niño–Southern Oscillation on interannual time scales and the Atlantic multidecadal oscillation on multidecadal time scales. La Niña seasons tend to be characterized by more CONUS hurricane landfalls than El Niño seasons, and positive Atlantic multidecadal oscillation phases tend to have more CONUS hurricane landfalls than negative phases.Growth in coastal population and regional wealth are the overwhelming drivers of observed increases in hurricane-related damage. As the population and wealth of the United States has increased in coastal locations, it has invariably led to the growth in exposure and vulnerability of coastal property along the U.S. Gulf and East Coasts. Unfortunately, the risks associated with more people and vulnerable exposure came to fruition in Texas and Florida during the 2017 season following the landfalls of Hurricanes Harvey and Irma. Total economic damage from those two storms exceeded $125 billion. Growth in coastal population and exposure is likely to continue in the future, and when hurricane landfalls do occur, this will likely lead to greater damage costs than previously seen. Such a statement is made recognizing that the vast scope of damage from hurricanes often highlights the effectiveness (or lack thereof) of building codes, flood maps, infrastructure, and insurance in at-risk communities.


2020 ◽  
Author(s):  
Weihsueh A. Chiu ◽  
Rebecca Fischer ◽  
Martial L. Ndeffo-Mbah

Abstract Social distancing measures have been implemented in the United States (US) since March 2020, to mitigate the spread of SARS-CoV-2, the causative agent of COVID-19. However, by mid-May most states began relaxing these measures to support the resumption of economic activity, even as disease incidence continued to increase in many states. To evaluate the impact of relaxing social distancing restrictions on COVID-19 dynamics and control in the US, we developed a transmission dynamic model and calibrated it to US state-level COVID-19 cases and deaths from March to June 20th, 2020, using Bayesian methods. We used this model to evaluate the impact of reopening, social distancing, testing, contact tracing, and case isolation on the COVID-19 epidemic in each state. We found that using stay-at-home orders, most states were able to curtail their COVID-19 epidemic curve by reducing and achieving an effective reproductive number below 1. But by June 20th, 2020, only 19 states and the District of Columbia were on track to curtail their epidemic curve with a 75% confidence, at current levels of reopening. Of the remaining 31 states, 24 may have to double their current testing and/or contact tracing rate to curtail their epidemic curve, and seven need to further restrict social contact by 25% in addition to doubling their testing and contact tracing rates. When social distancing restrictions are being eased, greater state-level testing and contact tracing capacity remains paramount for mitigating the risk of large-scale increases in cases and deaths.


Author(s):  
Linda S. Prokopy ◽  
Wendy-Lin Bartels ◽  
Gary Burniske ◽  
Rebecca Power

Agricultural extension has evolved over the last 200 years from a system of top-down dissemination of information from experts to farmers to a more complex system, in which a diversity of knowledge producers and farmers work together to co-produce information. Following a detailed history of the evolution of extension in the United States, this article describes an example from the southeastern United States that illustrates how innovative institutional arrangements enable land-grant universities to actively engage farmers and extension agents as key partners in the knowledge generation process. A second U.S. example shows that private retailers are more influential than extension in influencing large-scale farmers’ farm management decisions in the midwestern United States. However, these private retailers trust extension as a source of climate change information and thus partnerships are important for extension. Nongovernmental organizations (NGOs) have been an important source of extension services for smallholder farmers across the world, and examples from the NGO CARE indicate that a participatory and facilitative approach works well for climate change communication. Collectively, these examples emphasize that the role of agricultural extension in climate change communication is essential in the context of both developed and developing countries and with both smallholder farmers and large-scale farmers. These case studies illustrate the effectiveness of a co-production approach, the importance of partners and donors, and the changing landscape of agricultural extension delivery.


2013 ◽  
Vol 26 (5) ◽  
pp. 1626-1642 ◽  
Author(s):  
Sang-Ki Lee ◽  
Robert Atlas ◽  
David Enfield ◽  
Chunzai Wang ◽  
Hailong Liu

Abstract The record-breaking U.S. tornado outbreaks in the spring of 2011 prompt the need to identify long-term climate signals that could potentially provide seasonal predictability for U.S. tornado outbreaks. This study uses both observations and model experiments to show that a positive phase TransNiño may be one such climate signal. Among the top 10 extreme outbreak years during 1950–2010, seven years including the top three are identified with a strongly positive phase TransNiño. The number of intense tornadoes in April–May is nearly doubled during the top 10 positive TransNiño years from that during 10 neutral years. TransNiño represents the evolution of tropical Pacific sea surface temperatures (SSTs) during the onset or decay phase of the El Niño–Southern Oscillation. A positive phase TransNiño is characterized by colder than normal SSTs in the central tropical Pacific and warmer than normal SSTs in the eastern tropical Pacific. Modeling experiments suggest that warmer than normal SSTs in the eastern tropical Pacific work constructively with colder than normal SSTs in the central tropical Pacific to force a strong and persistent teleconnection pattern that increases both the upper-level westerly and lower-level southwesterly over the central and eastern United States. These anomalous winds advect more cold and dry upper-level air from the high latitudes and more warm and moist lower-level air from the Gulf of Mexico converging into the east of the Rockies, and also increase both the lower-tropospheric (0–6 km) and lower-level (0–1 km) vertical wind shear values therein, thus providing large-scale atmospheric conditions conducive to intense tornado outbreaks over the United States.


2020 ◽  
pp. 1-22
Author(s):  
Timothy Fraser ◽  
Lily Cunningham ◽  
Amos Nasongo

Do communities struck by disaster build back better, or not? Recent small- and medium- N studies have shown mixed effects. This mixed-methods study tests the effect of disasters on the adoption of solar power as a key form of building back better and adapting to climate change. To test this effect, we applied a large- N longitudinal matching experiment on cities affected and unaffected by disaster paired with qualitative case studies, focusing on the 2011 triple disaster in Japan and Hurricane Sandy in 2012 in the United States. We find that disaster-hit cities adopt more solar farms and rooftop solar than cities unaffected by crisis and that the social capital of these disaster-hit communities shapes their adoption patterns. By clarifying the effects of disasters on the build-back-better phenomenon in comparative cases, this article aims to guide recovery priorities after large-scale shocks.


2017 ◽  
Vol 4 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Larissa Portnoff ◽  
Clayton McClintock ◽  
Elsa Lau ◽  
Simon Choi ◽  
Lisa Miller

Sign in / Sign up

Export Citation Format

Share Document