Nonretinotopic visual processing in the brain

2015 ◽  
Vol 32 ◽  
Author(s):  
DAVID MELCHER ◽  
MARIA CONCETTA MORRONE

AbstractA basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophysiology and neuroimaging have provided evidence for the modulation of neural firing by gaze position and processing of visual information based on craniotopic or spatiotopic coordinates. Transient remapping of the spatial and temporal properties of neurons contingent on saccadic eye movements has been demonstrated in visual cortex, as well as frontal and parietal areas involved in saliency/priority maps, and is a good candidate to mediate some of the spatial invariance demonstrated by perception. Recent studies suggest that spatiotopic selectivity depends on a low spatial resolution system of maps that operates over a longer time frame than retinotopic processing and is strongly modulated by high-level cognitive factors such as attention. The interaction of an initial and rapid retinotopic processing stage, tied to new fixations, and a longer lasting but less precise nonretinotopic level of visual representation could underlie the perception of both a detailed and a stable visual world across saccadic eye movements.

1991 ◽  
Vol 6 (1) ◽  
pp. 3-13 ◽  
Author(s):  
James T. McIlwain

AbstractThis paper reviews evidence that the superior colliculus (SC) of the midbrain represents visual direction and certain aspects of saccadic eye movements in the distribution of activity across a population of cells. Accurate and precise eye movements appear to be mediated, in part at least, by cells of the SC that have large sensory receptive fields and/or discharge in association with a range of saccades. This implies that visual points or saccade targets are represented by patches rather than points of activity in the SC. Perturbation of the pattern of collicular discharge by focal inactivation modifies saccade amplitude and direction in a way consistent with distributed coding. Several models have been advanced to explain how such a code might be implemented in the colliculus. Evidence related to these hypotheses is examined and continuing uncertainties are identified.


2020 ◽  
Author(s):  
Han Zhang ◽  
Nicola C Anderson ◽  
Kevin Miller

Recent studies have shown that mind-wandering (MW) is associated with changes in eye movement parameters, but have not explored how MW affects the sequential pattern of eye movements involved in making sense of complex visual information. Eye movements naturally unfold over time and this process may reveal novel information about cognitive processing during MW. The current study used Recurrence Quantification Analysis (Anderson, Bischof, Laidlaw, Risko, & Kingstone, 2013) to describe the pattern of refixations (fixations directed to previously-inspected regions) during MW. Participants completed a real-world scene encoding task and responded to thought probes assessing intentional and unintentional MW. Both types of MW were associated with worse memory of the scenes. Importantly, RQA showed that scanpaths during unintentional MW were more repetitive than during on-task episodes, as indicated by a higher recurrence rate and more stereotypical fixation sequences. This increased repetitiveness suggests an adaptive response to processing failures through re-examining previous locations. Moreover, this increased repetitiveness contributed to fixations focusing on a smaller spatial scale of the stimuli. Finally, we were also able to validate several traditional measures: both intentional and unintentional MW were associated with fewer and longer fixations; Eye-blinking increased numerically during both types of MW but the difference was only significant for unintentional MW. Overall, the results advanced our understanding of how visual processing is affected during MW by highlighting the sequential aspect of eye movements.


Author(s):  
Angie M. Michaiel ◽  
Elliott T.T. Abe ◽  
Cristopher M. Niell

ABSTRACTMany studies of visual processing are conducted in unnatural conditions, such as head- and gaze-fixation. As this radically limits natural exploration of the visual environment, there is much less known about how animals actively use their sensory systems to acquire visual information in natural, goal-directed contexts. Recently, prey capture has emerged as an ethologically relevant behavior that mice perform without training, and that engages vision for accurate orienting and pursuit. However, it is unclear how mice target their gaze during such natural behaviors, particularly since, in contrast to many predatory species, mice have a narrow binocular field and lack foveate vision that would entail fixing their gaze on a specific point in the visual field. Here we measured head and bilateral eye movements in freely moving mice performing prey capture. We find that the majority of eye movements are compensatory for head movements, thereby acting to stabilize the visual scene. During head turns, however, these periods of stabilization are interspersed with non-compensatory saccades that abruptly shift gaze position. Analysis of eye movements relative to the cricket position shows that the saccades do not preferentially select a specific point in the visual scene. Rather, orienting movements are driven by the head, with the eyes following in coordination to sequentially stabilize and recenter the gaze. These findings help relate eye movements in the mouse to other species, and provide a foundation for studying active vision during ethological behaviors in the mouse.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Melcher ◽  
Devpriya Kumar ◽  
Narayanan Srinivasan

Abstract Visual perception is based on periods of stable fixation separated by saccadic eye movements. Although naive perception seems stable (in space) and continuous (in time), laboratory studies have demonstrated that events presented around the time of saccades are misperceived spatially and temporally. Saccadic chronostasis, the “stopped clock illusion”, represents one such temporal distortion in which the movement of the clock hand after the saccade is perceived as lasting longer than usual. Multiple explanations for chronostasis have been proposed including action-backdating, temporal binding of the action towards the moment of its effect (“intentional binding”) and post-saccadic temporal dilation. The current study aimed to resolve this debate by using different types of action (keypress vs saccade) and varying the intentionality of the action. We measured both perceived onset of the motor action and perceived onset of an auditory tone presented at different delays after the keypress/saccade. The results showed intentional binding for the keypress action, with perceived motor onset shifted forwards in time and the time of the tone shifted backwards. Saccades resulted in the opposite pattern, showing temporal expansion rather than compression, especially with cued saccades. The temporal illusion was modulated by intentionality of the movement. Our findings suggest that saccadic chronostasis is not solely dependent on a backward shift in perceived saccade onset, but instead reflects a temporal dilation. This percept of an effectively “longer” period at the beginning of a new fixation may reflect the pattern of suppressed, and then enhanced, visual processing around the time of saccades.


2019 ◽  
Vol 116 (6) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jasper H. Fabius ◽  
Alessio Fracasso ◽  
Tanja C. W. Nijboer ◽  
Stefan Van der Stigchel

Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.


2017 ◽  
Vol 117 (2) ◽  
pp. 492-508 ◽  
Author(s):  
James E. Niemeyer ◽  
Michael A. Paradiso

Contrast sensitivity is fundamental to natural visual processing and an important tool for characterizing both visual function and clinical disorders. We simultaneously measured contrast sensitivity and neural contrast response functions and compared measurements in common laboratory conditions with naturalistic conditions. In typical experiments, a subject holds fixation and a stimulus is flashed on, whereas in natural vision, saccades bring stimuli into view. Motivated by our previous V1 findings, we tested the hypothesis that perceptual contrast sensitivity is lower in natural vision and that this effect is associated with corresponding changes in V1 activity. We found that contrast sensitivity and V1 activity are correlated and that the relationship is similar in laboratory and naturalistic paradigms. However, in the more natural situation, contrast sensitivity is reduced up to 25% compared with that in a standard fixation paradigm, particularly at lower spatial frequencies, and this effect correlates with significant reductions in V1 responses. Our data suggest that these reductions in natural vision result from fast adaptation on one fixation that lowers the response on a subsequent fixation. This is the first demonstration of rapid, natural-image adaptation that carries across saccades, a process that appears to constantly influence visual sensitivity in natural vision. NEW & NOTEWORTHY Visual sensitivity and activity in brain area V1 were studied in a paradigm that included saccadic eye movements and natural visual input. V1 responses and contrast sensitivity were significantly reduced compared with results in common laboratory paradigms. The parallel neural and perceptual effects of eye movements and stimulus complexity appear to be due to a form of rapid adaptation that carries across saccades.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jen-Chun Hsiang ◽  
Keith P Johnson ◽  
Linda Madisen ◽  
Hongkui Zeng ◽  
Daniel Kerschensteiner

Neurons receive synaptic inputs on extensive neurite arbors. How information is organized across arbors and how local processing in neurites contributes to circuit function is mostly unknown. Here, we used two-photon Ca2+ imaging to study visual processing in VGluT3-expressing amacrine cells (VG3-ACs) in the mouse retina. Contrast preferences (ON vs. OFF) varied across VG3-AC arbors depending on the laminar position of neurites, with ON responses preferring larger stimuli than OFF responses. Although arbors of neighboring cells overlap extensively, imaging population activity revealed continuous topographic maps of visual space in the VG3-AC plexus. All VG3-AC neurites responded strongly to object motion, but remained silent during global image motion. Thus, VG3-AC arbors limit vertical and lateral integration of contrast and location information, respectively. We propose that this local processing enables the dense VG3-AC plexus to contribute precise object motion signals to diverse targets without distorting target-specific contrast preferences and spatial receptive fields.


2018 ◽  
Author(s):  
Adam P. Morris ◽  
Bart Krekelberg

SummaryHumans and other primates rely on eye movements to explore visual scenes and to track moving objects. As a result, the image that is projected onto the retina – and propagated throughout the visual cortical hierarchy – is almost constantly changing and makes little sense without taking into account the momentary direction of gaze. How is this achieved in the visual system? Here we show that in primary visual cortex (V1), the earliest stage of cortical vision, neural representations carry an embedded “eye tracker” that signals the direction of gaze associated with each image. Using chronically implanted multi-electrode arrays, we recorded the activity of neurons in V1 during tasks requiring fast (exploratory) and slow (pursuit) eye movements. Neurons were stimulated with flickering, full-field luminance noise at all times. As in previous studies 1-4, we observed neurons that were sensitive to gaze direction during fixation, despite comparable stimulation of their receptive fields. We trained a decoder to translate neural activity into metric estimates of (stationary) gaze direction. This decoded signal not only tracked the eye accurately during fixation, but also during fast and slow eye movements, even though the decoder had not been exposed to data from these behavioural states. Moreover, this signal lagged the real eye by approximately the time it took for new visual information to travel from the retina to cortex. Using simulations, we show that this V1 eye position signal could be used to take into account the sensory consequences of eye movements and map the fleeting positions of objects on the retina onto their stable position in the world.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf2218 ◽  
Author(s):  
Richard Schweitzer ◽  
Martin Rolfs

Rapid eye movements (saccades) incessantly shift objects across the retina. To establish object correspondence, the visual system is thought to match surface features of objects across saccades. Here, we show that an object’s intrasaccadic retinal trace—a signal previously considered unavailable to visual processing—facilitates this match making. Human observers made saccades to a cued target in a circular stimulus array. Using high-speed visual projection, we swiftly rotated this array during the eyes’ flight, displaying continuous intrasaccadic target motion. Observers’ saccades landed between the target and a distractor, prompting secondary saccades. Independently of the availability of object features, which we controlled tightly, target motion increased the rate and reduced the latency of gaze-correcting saccades to the initial presaccadic target, in particular when the target’s stimulus features incidentally gave rise to efficient motion streaks. These results suggest that intrasaccadic visual information informs the establishment of object correspondence and jump-starts gaze correction.


Sign in / Sign up

Export Citation Format

Share Document