Phenotypic plasticity and evolutionary potential in somatic cells of Armillaria gallica

2003 ◽  
Vol 107 (4) ◽  
pp. 408-412 ◽  
Author(s):  
Diane Cope Peabody ◽  
Robert B. Peabody ◽  
Maura Geens Tyrrell ◽  
Matthew J. Towle ◽  
Elizabeth M. Johnson
2017 ◽  
Author(s):  
John T. Waller ◽  
Anna Kell ◽  
Mireia Ballesta ◽  
Aude Giraud ◽  
Jessica K. Abbott ◽  
...  

AbstractPopulations respond to novel environmental challenges either through genetic changes, through adaptive phenotypic plasticity for the traits in question, or by a combination of these factors. Here, we investigated the evolutionary potential of phenotypic plasticity for male mating success, locomotory ability, and heating rate (a physiological performance trait) in the fruitfly Drosophila melanogaster, using isogenic male lines from the Drosophila Reference Genome Panel (DGRP) and hemi-clonal males. We quantified thermal reaction norms of how male mating success changed in relation to a temperate gradient, ranging from cold (18 °C) via optimal (24 °C) to hot and stressful environments (either 30 °C or 36 °C). We found significant differences in male mating success and locomotory performance between different lines, as well as significant main effects of temperature, but no significant genotype-by-environment interactions (GEI:s). A statistical power analysis revealed that the variance explained by GEI:s for thermal plasticity using this sample size is likely to be modest or very small, and represent only 4% of the total variation in male mating success. The lack of strong GEI:s for these two behavioral traits contrast with the presence of significant GEI:s for male heating rate, as measured by thermal imaging (infrared camera technology). These results suggest that sexual selection through male mating success is not likely to be efficient in mediating evolutionary rescue through changed plasticity in response to changing temperatures.


2017 ◽  
Author(s):  
Vicencio Oostra ◽  
Marjo Saastamoinen ◽  
Bas J. Zwaan ◽  
Christopher Wheat

AbstractUnderstanding how populations adapt to changing environments is a major goal in evolutionary biology and ecology, and particularly urgent for predicting resilience to climate change. Phenotypic plasticity, the ability to express multiple phenotypes from the same genome, is a widespread adaptation to short-term environmental fluctuations, but whether it facilitates adaptation to environmental change on evolutionary timescales, such as those under climate change, remains contentious. Here, we investigate plasticity and adaptive potential in an African savannah butterfly displaying extensive plasticity as adaptation to predictable dry-wet seasonality. We assess the transcriptional architecture of seasonal plasticity and find pervasive gene expression differences between the seasonal phenotypes, reflecting a genome-wide plasticity programme. Strikingly, intra-population genetic variation for this response is highly depleted, possibly reflecting strong purifying selection in its savannah habitat where an environmental cue (temperature) reliably predicts seasonal transitions and the cost of a mismatched phenotype is high. Under climate change the accuracy of such cues may deteriorate, rendering dominant reactions norm maladaptive. Therefore, depleted variation for plasticity as reported here may crucially limit evolutionary potential when conditions change, and seasonally plastic species may in fact be especially vulnerable to climate change.


Botany ◽  
2012 ◽  
Vol 90 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Johanne Brunet ◽  
Zachary Larson-Rabin

In high-altitude habitats, an increase in temperature and greater precipitation in the form of rain represent climate changes typically associated with global warming. We determined whether phenotypic plasticity and genetic changes in the mean phenotype could affect the adaptation of flowering time to changes in the environment resulting from global warming in a montane plant species, Aquilegia coerulea James. We collected seeds from 17 plants from each of three natural populations. For each of these 51 families, we assigned 3–4 individuals to each of four water and temperature treatments. We observed phenotypic plasticity in flowering time in response to both temperature and water availability but no genetic variance or genetic differentiation in phenotypic plasticity. These results indicate that phenotypic plasticity could provide a quick response to environmental changes but provides little evolutionary potential. In contrast to phenotypic plasticity in flowering time, the mean flowering time did vary among families and among populations, suggesting a genetic basis to flowering time and adaptation in the different populations. The most likely scenario for the adaptation of this plant species to climate change is a rapid response via phenotypic plasticity followed by selection and micro-evolutionary changes in the mean phenotype.


Mycologia ◽  
2005 ◽  
Vol 97 (4) ◽  
pp. 777-787 ◽  
Author(s):  
R. B. Peabody ◽  
D. C. Peabody ◽  
M. G. Tyrrell ◽  
E. Edenburn-MacQueen ◽  
R. P. Howdy ◽  
...  

2020 ◽  
Vol 117 (32) ◽  
pp. 19321-19327 ◽  
Author(s):  
Dina Navon ◽  
Ira Male ◽  
Emily R. Tetrault ◽  
Benjamin Aaronson ◽  
Rolf O. Karlstrom ◽  
...  

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.


Author(s):  
Carolyn A. Larabell ◽  
David G. Capco ◽  
G. Ian Gallicano ◽  
Robert W. McGaughey ◽  
Karsten Dierksen ◽  
...  

Mammalian eggs and embryos contain an elaborate cytoskeletal network of “sheets” which are distributed throughout the entire cell cytoplasm. Cytoskeletal sheets are long, planar structures unlike the cytoskeletal networks typical of somatic cells (actin filaments, microtubules, and intermediate filaments), which are filamentous. These sheets are not found in mammalian somatic cells nor are they found in nonmammalian eggs or embryos. Evidence that they are, indeed, cytoskeletal in nature is derived from studies demonstrating that 1) the sheets are retained in the detergent-resistant cytoskeleton fraction; 2) there are no associated membranes (determined by freeze-fracture); and 3) the sheets dissociate into filaments at the blastocyst stage of embryogenesis. Embedment-free sections of hamster eggs viewed at 60 kV show sheets running across the egg cytoplasm (Fig. 1). Although this approach provides excellent global views of the sheets and their reorganization during development, the mechanism of image formation for embedment-free sections does not permit evaluation of the sheets at high resolution.


2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


Sign in / Sign up

Export Citation Format

Share Document